Math, asked by ankitshaw20006, 8 months ago

b+c-a/y+z-x=c+a-b/z+x-y=a+b-c/x+y-z, then prove that a/x=b/y=c/z​

Answers

Answered by abhi569
10

Step-by-step explanation:

Let a + b + c = A &  x + y + z = B

Each ratio = sum of antecedents ÷ sum of consequents. Here, each ratio is:

=> \small{\frac{(b+c-a)+(c+a-b)+(a+b-c)}{(y+z-x)+((z+x-y)+(x+y-z)} }

=> \frac{a+b+c}{x+y+z}

=> \frac{A}{B}

And, hence,

=> \frac{b+c-a}{y+z-x}=\frac{c+a-b}{z+x-y }=\frac{a+b-c}{x+y-z}=\frac{A}{B}

=> \frac{a+b+c-2a}{x+y+z-2x}=\frac{a+b+c-2b}{x+y+z-2y} =\frac{a+b+c-2c}{x+y+z-2z}=\frac{A}{B}

=> \frac{A-2a}{B-2x}=\frac{A-2b}{B-2y}=\frac{A-2c}{B-2z}=\frac{A}{B}

Then, we\: can\:say,

A - 2a = \frac{A}{B}(B - 2x) → \frac{a}{x} = \frac{A}{B}

A - 2b =\frac{A}{B} (B - 2y) → \frac{b}{y} = \frac{A}{B}

  A - 2c =\frac{A}{B} (B - 2z) →\frac{c}{z}=\frac{A}{B}

Compare \:all,

=> \frac{a}{x} =\frac{b}{y} =\frac{c}{z}=\frac{A}{B}

=> \frac{a}{x} =\frac{b}{y} =\frac{c}{z}

Proved.

Answered by vinnetpandey9aug
0

Step-by-step explanation:

Step-by-step explanation:

Let a + b + c = Aa+b+c=A & x + y + z = Bx+y+z=B

Each ratio = sum of antecedents ÷ sum of consequents. Here, each ratio is:

=> \small{\frac{(b+c-a)+(c+a-b)+(a+b-c)}{(y+z-x)+((z+x-y)+(x+y-z)} }

(y+z−x)+((z+x−y)+(x+y−z)

(b+c−a)+(c+a−b)+(a+b−c)

=> \frac{a+b+c}{x+y+z}

x+y+z

a+b+c

=> \frac{A}{B}

B

A

And, hence,And,hence,

=> \frac{b+c-a}{y+z-x}=\frac{c+a-b}{z+x-y }=\frac{a+b-c}{x+y-z}=\frac{A}{B}

y+z−x

b+c−a

=

z+x−y

c+a−b

=

x+y−z

a+b−c

=

B

A

=> \frac{a+b+c-2a}{x+y+z-2x}=\frac{a+b+c-2b}{x+y+z-2y} =\frac{a+b+c-2c}{x+y+z-2z}=\frac{A}{B}

x+y+z−2x

a+b+c−2a

=

x+y+z−2y

a+b+c−2b

=

x+y+z−2z

a+b+c−2c

=

B

A

=> \frac{A-2a}{B-2x}=\frac{A-2b}{B-2y}=\frac{A-2c}{B-2z}=\frac{A}{B}

B−2x

A−2a

=

B−2y

A−2b

=

B−2z

A−2c

=

B

A

Then, we\: can\:say,Then,wecansay,

• A - 2a = \frac{A}{B}(B - 2x) → \frac{a}{x} = \frac{A}{B}A−2a=

B

A

(B−2x)→

x

a

=

B

A

• A - 2b =\frac{A}{B} (B - 2y) → \frac{b}{y} = \frac{A}{B}A−2b=

B

A

(B−2y)→

y

b

=

B

A

•A - 2c =\frac{A}{B} (B - 2z) →\frac{c}{z}=\frac{A}{B}A−2c=

B

A

(B−2z)→

z

c

=

B

A

Compare \:all,Compareall,

=> \frac{a}{x} =\frac{b}{y} =\frac{c}{z}=\frac{A}{B}

x

a

=

y

b

=

z

c

=

B

A

=>\frac{a}{x} =\frac{b}{y} =\frac{c}{z}

x

a

=

y

b

=

z

c

Proved.

Similar questions