Math, asked by babliart988, 7 days ago

b. Calculate the area of the shaded region​

Attachments:

Answers

Answered by AestheticSoul
8

Required Answer :

The area of shaded region = 54 cm²

Given :

  • OB = 5 cm
  • AO = 12 cm
  • BC = 14 cm
  • AC = 15 cm

To find :

  • The area of shaded region

Solution :

Firstly, we will calculate the length of AB, by using the pythagoras theorem.

In ∆AOB

By pythagoras theorem,

H² = P² + B²

where,

  • H = Hypotenuse
  • P = Perpendicular
  • B = Base

we have,

  • Hypotenuse (AB) = ?
  • Perpendicular (OB) = 5 cm
  • Base (AO) = 12 cm

Substituting the values :

⇒ AB² = (5)² + (12)²

⇒ AB² = 25 + 144

⇒ AB² = 169

⇒ Taking square root on both the sides :

⇒ AB = √169

⇒ AB = √(13 × 13)

⇒ AB = ± 13 Reject - ve

AB = 13 cm

Now let's calculate the area of ∆ABC by using the Heron's formula.

  • Semi perimeter = (a + b + c) ÷ 2

where,

  • a, b and c are the three sides of the triangle

Substituting the given values :

⇒ Semi perimeter = (13 + 15 + 14) ÷ 2

⇒ Semi perimeter = 42 ÷ 2

⇒ Semi perimeter = 21 cm

  • Heron's formula = √s(s - a)(s - b)(s - c)

Substituting the given values :

⇒ Area = √21(21 - 13)(21 - 15)(21 - 14)

⇒ Area = √21(8)(6)(7)

⇒ Area = √(7 × 3 × 2 × 2 × 2 × 3 × 2 × 7)

⇒ Area = 7 × 3 × 2 × 2

⇒ Area = 84

  • Area of ∆ABC = 84 cm²

Now, calculating the area of ∆AOB, by using the following formula :

  • Area of triangle = ½ × b × h

where,

  • b denotes the base
  • h denotes the height

we have,

  • b = 12 cm
  • h = 5 cm

Substituting the given values :

⇒ Area = ½ × 12 × 5

⇒ Area = 6 × 5

⇒ Area = 30

  • Area of ∆AOB = 30 cm²

To calculate the area of shaded region, subtract the area of ∆AOB from the area of ∆ABC. The resultant value will be the area of shaded region.

⇒ Area of shaded region = Area of ∆ABC - Area of ∆AOB

⇒ Area of shaded region = 84 - 30

⇒ Area of shaded region = 54

The area of shaded region = 54 cm²

Similar questions