Math, asked by AdhnaanRiaz, 9 months ago

B. Find the area of A ABC, if ZA = 60° and
B = 30° and CB=6 cm.​

Answers

Answered by akshay241480
2

Answer:

Area of triangle is

2 \sqrt{3 }  \times 6 { \:cm}^{ 2}

Step-by-step explanation:

This can be obtained by finding AC using trigonometry and finding the area of triangle by ½×b×h.

Answered by roshinik1219
1

Given:

In a\Delta ABC, BC = 6cm, \angle B = 30^\circ and \angle A = 60^\circ

To Find:

  • Area of  \Delta ABC

Solution:

       We know that,

           In a triangle sum of all angles are 180^ \circ

            In \Delta ABC

                 \angle A + \angle B+ \angle C = 180^\circ\\ \angle C = 180^\circ - \angle A - \angle B

                 \angle C = 180^\circ - 30^\circ  - 60^\circ

                \angle C = 90^\circ

        Thus,  \Delta ABC is a right angle triangle

          Image of \Delta ABC is attached below

                     tan B = \frac{AC}{CB}

                     tan 30^\circ = \frac{AC}{6}

                          AC =\frac{6}{\sqrt{3} }  \\AC = 2\sqrt{3}

                Area of \Delta ABC = \frac{1}{2}  \times CB \times AC

                                         = \frac{1}{2}  \times 6 \times 2\sqrt{3}

                                          = 6\sqrt{3} cm^2

Thus, Area of \Delta ABC   = 6\sqrt{3} cm^2

Attachments:
Similar questions