Math, asked by varahalaraovarahalar, 3 months ago

(b) If y = sin (log x), then show that x? y2 + xy1 + y = 0.​

Answers

Answered by mathdude500
3

Appropriate Question :-

\sf\:If \: y =\sin(logx) \: then \: show \: that \:  {x}^{2}y_2 + xy_1 + y = 0.

Solution :-

Identities Used :-

\blue{\boxed{\sf\:\dfrac{d}{dx}sinx = cosx}}

\blue{\boxed{\sf\:\dfrac{d}{dx}cosx =  - sinx}}

\blue{\boxed{\sf\:\dfrac{d}{dx}logx = \dfrac{1}{x}}}

\blue{\boxed{\sf\:\dfrac{d}{dx}y = y_1}}

\blue{\boxed{\sf\:\dfrac{d}{dx}y_1 = y_2}}

\blue{\boxed{\sf\:\dfrac{d}{dx}u.v = v\dfrac{d}{dx}u + u\dfrac{d}{dx}v}}

Let's solve the problem now!!

Consider,

\rm :\longmapsto\:y =  \sin(logx)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =  \dfrac{d}{dx}\sin(logx)

\rm :\longmapsto\:y_1 =  \cos(logx)\dfrac{d}{dx}logx

\rm :\longmapsto\:y_1 =  \cos(logx)\dfrac{1}{x}

\rm :\longmapsto\:x \: y_1 =  \cos(logx)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} \: x \: y_1 =  \dfrac{d}{dx}\cos(logx)

\rm :\longmapsto\:x\dfrac{d}{dx}y_1 + y_1\dfrac{d}{dx}x =  -  \sin(logx)\dfrac{d}{dx}logx

\rm :\longmapsto\:xy_2 + y_1 \times 1 =  - y \times \dfrac{1}{x} \:  \:  \:  \:  \:   \red{ \because\{ y =  \sin(logx) \}}

\rm :\longmapsto\:xy_2 + y_1 =  - \dfrac{y}{x}

\rm :\longmapsto\: {x}^{2}y_2 + xy_1 =  - y

\bf\implies \: {x}^{2}y_2 + xy_1 + y = 0

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

\blue{\boxed{\sf\:\dfrac{d}{dx} x = 1}}

\blue{\boxed{\sf\:\dfrac{d}{dx}k= 0}}

\blue{\boxed{\sf\:\dfrac{d}{dx}tanx=  {sec}^{2}x}}

\blue{\boxed{\sf\:\dfrac{d}{dx}cotx=  { -  \: cosec}^{2}x}}

\blue{\boxed{\sf\:\dfrac{d}{dx}kf(x)= k\dfrac{d}{dx}f(x)}}

\blue{\boxed{\sf\:\dfrac{d}{dx}secx = secx \: tanx}}

\blue{\boxed{\sf\:\dfrac{d}{dx}cosecx =  -  \: cosecx \: cotx}}

\blue{\boxed{\sf\:\dfrac{d}{dx}  {e}^{x} =  {e}^{x}}}

Similar questions