Math, asked by jacintawilson22, 4 months ago

(b) In a parallelogram PQRS, LP = (3x - 12), ZQ = (2y + 8) and R =
(2x + 7)". Find the values of x and y.​

Answers

Answered by anyasingh535
0

Answer:

Step-by-step explanation:

PQRS IS A PARALLELOGRAM

VALUE OF

 P=(3x-12)

 Q=(2y+8)

 R=(2x+7)

OPPOSITE ANGLES OF A PARALLELOGRAM ARE EQUAL SO

     ⇒ ∠ P = ∠ R

     ⇒ ∠ Q = ∠ S

SO,

                 3x-12=2x+7

                 3x-2x=12+7

                         x=19

∠P = 3x-12 = 3 X 19 - 12 = 57- 12 = 45°

SO ∠ R IS ALSO 45°.

NOW TO FIND P

SUM OF ADJACENT SIDES OF A PARALLELOGRAM IS 180°

∠P + ∠S = 180°

∠P + 45° = 180°

∠P = 135°

TO FIND Y

2y+8=135

2y=135-8

y=127/2

y=63.5

Similar questions