Math, asked by dabluyadav404, 9 months ago

B. In the figure AB & CD are two straight lines intersecting at O, OP is a
ray. What is the measure of AOD.
a) 40°
b) 100°
c) 140°
d) 128°​

Answers

Answered by mohdkaifalam112
21

Step-by-step explanation:

 

☜☆☞hey friend!!! ☜☆☞

where is your figure...

but no problem I understand your problems

here is your answer ☞

________-

AB and CD intersect at O and CD is a straight line.

(i) ∠COA+ ∠AOD = 180°   (linear pair)

42°+ ∠AOD  = 180°

∠AOD  = 138°_____answer

(ii) ∠COA and ∠BOD are vertically opposite angles. 

∴∠COA = ∠BOD = 42°   [from (i)]

(iii) ∠COB and ∠AOD are vertically opposite angles.

∴∠COB = ∠AOD = 138°  [from (i)]

I think my answer is capable to clear your confusion..

hope you help it

follow me

Answered by NainaRamroop
11

Given:-

AB and CD are two straight lines intersecting at O.

OP is a ray.

To Find:- Angle AOD

Solution-

- AB and CD intersect at O and CD is a straight line.

- (i) ∠COA+ ∠AOD = 180°   (linear pair)

42°+ ∠AOD  = 180°

∠AOD  = 138°

- (ii) ∠COB and ∠AOD are vertically 

opposite angles.

∴∠COB = ∠AOD = 138°  [from (i)]

- (iii) ∠COA and ∠BOD are vertically 

opposite angles

∴ ∠COA = ∠BOD = 42°   [from (i)]

- Sum of angles formed at the point is 360°.

∠COB + ∠AOD + ∠COA + ∠BOD = 360°

138° + 138° + 42° + 42° = 360°

360° = 360°

-*So, ∠AOD = 138°*

Similar questions