Math, asked by Anonymous, 1 month ago

♧ Bʀᴀɪɴʟʏ Sᴛᴀʀs

♧ Mᴏᴅᴇʀᴀᴛᴇʀs

 \color{lime}\huge\pmb{\mathcal{ Pʀᴏvᴇ \: \: THᴀᴛ}}

\mathtt{ \dfrac{ \cos \theta}{1 - \tan \theta} + \dfrac{ \sin \theta}{1 - \cot \theta} = \cos \theta + \sin \theta}

​​

Answers

Answered by amitkumar44481
25

To Prove :

LHS = RHS.

SolutioN :

\tt{ \dfrac{ Cos \theta}{1 - tan \theta} + \dfrac{ Sin \theta}{1 - Cot \theta} = Cos \theta + Sin \theta}

Taking LHS

 \rightarrow \tt \dfrac{ Cos \theta}{1 - tan \theta} + \dfrac{ Sin \theta}{1 - Cot \theta} \\

 \rightarrow \tt \dfrac{ Cos \theta}{1 - \frac{Sin\,\theta}{Cos\,\theta} } + \dfrac{ Sin\, \theta}{1 -   \frac{Cos\, \theta}{Sin\,\theta}} \\

 \rightarrow \tt \dfrac{ Cos \theta}{ \frac{Cos\,\theta-Sin\,\theta}{Cos\,\theta} } + \dfrac{ Sin\, \theta}{   \frac{Sin\,\theta - Cos\, \theta}{Sin\,\theta}} \\

Taking sign ( - ) common.

 \rightarrow \tt \dfrac{ Cos^2 \theta- Sin^2\,\theta}{Cos\,\theta-Sin\,\theta} \\

 \rightarrow \tt \dfrac{ (Cos\theta- Sin\,\theta)( Cos\theta + Sin\,\theta )}{Cos\,\theta-Sin\,\theta} \\

 \rightarrow \tt Cos\theta +  Sin\,\theta

Hence Proved.


mddilshad11ab: Perfect explaination ✔️
amitkumar44481: Thank you :-)
Answered by Anonymous
68

\small\pink{Hope \:  you  \: have \:  satisfied.}

Attachments:
Similar questions