Math, asked by nspking, 10 months ago

b²x²-(a²+b²)x+a²=0 by splitting middle term​

Answers

Answered by gourisuryan
1

Step-by-step explanation:

......... PLEASE MARK AS BRAINLIEST.........

b²x²-(a²+b²)x+a²=0

b²x²-a²x-b²x+a²=0

b²x²-b²x-a²x+a²=0

b²x(x-1)-a²(x-1)=0

(b²x-a²)(x-1)=0

x=a²/b²

x=1

Answered by Anonymous
4

\sf\red{\underline{\underline{Answer:}}}

\sf{1 \ and \ \frac{a^{2}}{b^{2}} \ are \ the \ roots \ of \ the}

\sf{given \ quadratic \ equation.}

\sf\orange{Given:}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{b^{2}x^{2}-(a^{2}+b^{2})x+a^{2}=0}}

\sf\pink{To \ find:}

\sf{The \ roots \ of \ the \ equation. }

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ quadratic \ equation \ is}

\sf{\implies{b^{2}x^{2}-(a^{2}+b^{2})x+a^{2}=0}}

\sf{\implies{b^{2}x^{2}-a^{2}x-b^{2}x+a^{2}=0}}

\sf{\implies{b^{2}x^{2}-b^{2}x-a^{2}x+a^{2}=0}}

\sf{\implies{b^{2}x(x-1)-a^{2}(x-1)=0}}

\sf{\implies{(x-1)(b^{2}x-a^{2})=0}}

\sf{\implies{\therefore{(x-1)=0 \ or \ (b^{2}x-a^{2})=0}}}

\sf{\implies{\therefore{x=1 \ or \ x=\frac{a^{2}}{b^{2}}}}}

\sf\purple{\tt{\therefore{1 \ and \ \frac{a^{2}}{b^{2}} \ are \ the \ roots \ of \ the}}}

\sf\purple{\tt{given \ quadratic \ equation.}}

Similar questions