Math, asked by vanshita865, 9 months ago

ābc and cbā are respectively ,the base 9 and the base seven numerals for the same positive integer. find the sum of digits of this s integer when expressed in base ten.​

Answers

Answered by Agastya0606
0

Given : ābc and cbā are respectively ,the base 9 and the base seven numerals for the same positive integer.

To find: The sum of digits of this integer when expressed in base ten.

Solution:

  • Now we haeve given that ABC is base 9 and CBA  is base 7.
  • Consider that X(10) = (ABC)(9)  = (CBA)(7)
  • Lets take X(10) = (ABC)(9), we get:

              = 9^2(A) + 9^1(B) + 9^0(C)

              = 81A + 9B + C       .........................I

  • Lets take X(1)0 = (CBA)(7), we get:

              = 7^2(C) + 7^1(B) + 7^0(A)

              = 49C + 7B + A        .........................II

  • Now equating I and II, we get:

              81A + 9B + C = 49C + 7B + A  

              2B = 48C - 80A

              B = 24C  - 40A

              B = 8(3C  - 5A)

  • So here A, B & C are in base 7 so A , B , C is less than  7.

              B = 8(3C  - 5A)   < 7

              B = 0  

              3C  - 5A = 0

              C = 5  , A  =  3

              A = 3  , B = 0  C  = 5

              (305)(9)  = (503)(7)

  • Now we have:

               X(10)   = 81A + 9B + C  

                           = 81(3) + 0 + 5  

                           = 248

  • or , we have:

               X(10)   = 49C + 7B + A  

                           = 49(5) + 0 + 3

                           =  248

               (305)(9)  = (503)(7)  = (248)(10)

  • So, sum of digits of this integer when expressed in base ten is:

               (248)(10) = 2 + 4 + 8 = 16

Answer:

        The sum of digits of this integer when expressed in base ten is 16.

Answered by Anonymous
1

Answer:

Inbox check krle

Step-by-step explanation:

Similar questions