Math, asked by aishibh9up9rat, 1 year ago

Be and cf are two equal altitudes of a triangle abc.prove that triangle abc is isosceles.

Answers

Answered by aravindhan
5
Area of Δ ABC = 1/2 Base * altitude
           = 1/2 AC * BE    =  1/2 AB * CF  = 1/2 AB * BE,    given BE = CF
So AC = AB
Hence it is an isosceles Δ.
=================================

Consider the triangles ABE and ACF.
Angle A is common. angle BEA = 90 = angle CFA. The triangles are similar.

 

 So isosceles triangle.

Attachments:
Answered by Anonymous
7

Hello mate ^_^

____________________________/\_

Solution:

In ∆BEC and ∆CFB

BE=CF                (Given)

∠BEC=∠CFB              (Each given equal to 90°)

BC=CB                (Common)

Therefore, by RHS rule, ∆BEC≅∆CFB

It means that ∠C=∠B        (Corresponding parts of congruent triangles are equal)

⇒AB=AC                (In a triangle, sides opposite to equal angles are equal)

Therefore, ∆ABC is isosceles.

hope, this will help you.

Thank you______❤

_____________________________❤

Attachments:
Similar questions