Math, asked by ritubaid111, 1 month ago

be the brainliest
evaluate cube root of 27 + cube root of 0.008 + cube root of 0.064

Answers

Answered by michaelgimmy
3

Question :-

Evaluate \sqrt[3]{27} + \sqrt[3]{0.008} + \sqrt[3]{0.064}

\begin {gathered} \end {gathered}

Solution :-

Let a > 0 be a Real Number and n be a Positive Integer. Then, \mathrm{n^{th}} root of a is defined as \mathtt {\sqrt[3]{a} = b}, if \mathtt{b^n = a} and b > 0.

It can also be defined as \mathtt {\sqrt[n]{a} = a^{\frac{1}{n}}}

\begin {gathered} \end {gathered}

Thus, we have -

\begin {aligned} \sqrt[3]{27} + \sqrt[3]{0.008} + \sqrt[3]{0.064} &= (27)^\frac{1}{3} + (0.008)^\frac{1}{3} + (0.064)^\frac{1}{3}\\\\&\Rightarrow (3^3)^\frac{1}{3} + [(0.2)^3]^\frac{1}{3} + [(0.4)^3]^\frac{1}{3}\\\\&\Rightarrow 3\:^{[3\times\frac{1}{3}]} + 0.2\:^{[3\times\frac{1}{3}]} + 0.4\:^{[3\times\frac{1}{3}]}\ \ \boxed {\because\: (a^m)^n = a^{m \times n}}\\\\&= 3 + 0.2 + 0.4 = \bf 3.6 \end{aligned}

\begin {gathered} \end {gathered}

Hence, \mathtt {\sqrt[3]{27} + \sqrt[3]{0.008} + \sqrt[3]{0.064} = 3.6} .

\begin {gathered} \end {gathered}

Additional Information :-

Cube Root :-

The Cube Root of a Number x is that Number whose Cube gives x. We Denote the Cube Root of x by \sqrt[3]{x} .

\begin {gathered} \end {gathered}

E.g. Since \mathtt {(2 \times 2 \times 2) = 8}, we have \mathtt {\sqrt[3]{8} = 2} .

\begin {gathered} \end {gathered}

Some more Laws of EXPONENTS :-

\bullet \mathrm{a^m \times a^n = a^{m \times n }}

\bullet \mathrm{\dfrac{a^m}{a^n} = a^{m - n}}

\bullet\: \mathrm{(a \times b)^n = a^n \times b^n}

\bullet\: \mathrm{a^{-n} = \dfrac{1}{a^n}}

\bullet\: \mathrm{a^0 = 1}

Similar questions