Bisectors of alternate interior angles formed by two parallel lines encloses : *
a) Quadraliteral
b) Trapezium
c) Rectangle
d) Kite
Answers
Answer:
Step-by-step explanation:
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
vvvfactorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q
factorize the given expression 3p2q – 14pqr + 16r2q jl
factorize the given expression 3p2q – 14pqr + 16r2q