Math, asked by sbhoop808, 6 months ago

Bisectors of alternate interior angles formed by two parallel lines encloses : *


a) Quadraliteral

b) Trapezium

c) Rectangle

d) Kite

Answers

Answered by pillaishruti28
0

Answer:

Step-by-step explanation:

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

vvvfactorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​

factorize the given expression 3p2q – 14pqr + 16r2q ​ jl

factorize the given expression 3p2q – 14pqr + 16r2q ​

Similar questions