blew is a transitive verb ?
Answers
Answer:
4(0)−3y+4=0
\tt 0 - 3y+4=00−3y+4=0
\tt 0-3y=-40−3y=−4
\sf -3y=-4−3y=−4
\tt y = \dfrac{-4}{-3}y=
−3
−4
\tt y = 1.33y=1.33
\tt 4x-3(0)=-44x−3(0)=−4
\tt 4x-0=-44x−0=−4
\tt 4x=-44x=−4
\tt x = \dfrac{-4}{4}x=
4
−4
\tt x=-1x=−1
\sf x+2y = 0-7x+2y=0−7
\sf 0+2y=-70+2y=−7
\sf 2y=-72y=−7
\tt \dfrac{-7}{2}=y
2
−7
=y
\tt -3.5=y−3.5=y
\tt x+2(0)=-7x+2(0)=−7
\tt x+0=-7x+0=−7
\tt x=-7x=−7
\bf Area = -6.546 sq. units.Area=−6.546sq.units.
Answer:
Answer:
{\underline{\underline{\maltese\textbf{\textsf{\red{Question}}}}}}✠Question
: \implies{\sf\bigg({\dfrac{x}{2} - 6}\bigg) = \bigg({8 - \dfrac{2x}{3}} \bigg)}:⟹(2x−6)=(8−32x)
\begin{gathered}\end{gathered}
{\underline{\underline{\maltese\textbf{\textsf{\red{Solution}}}}}}✠Solution
: \implies{\sf\bigg({\dfrac{x}{2} - 6}\bigg) = \bf\bigg({8 - \dfrac{2x}{3}} \bigg)}:⟹(2x−6)=(8−32x)
{: \implies{\sf\bigg({\dfrac{x - (6 \times 2)}{2}}\bigg) = \bf\bigg({\dfrac{(8 \times 3) - 2x}{3}} \bigg)}}:⟹(2x−(6×2))=(3(8×3)−2x)
{: \implies{\sf\bigg({\dfrac{x - 12}{2}}\bigg) = \bf\bigg({\dfrac{24 - 2x}{3}} \bigg)}}:⟹(2x−12)=(324−2x)
By cross multiplication
: \implies\sf{3(x - 12) = \bf{2(24 - 2x)}}:⟹3(x−12)=2(24−2x)
: \implies\sf{3x - 36 = \bf{48 - 4x}}:⟹3x−36=48−4x
: \implies\sf{4x - 3x = \bf{48 -36}}:⟹4x−3x=48−36
: \implies\sf{x = \bf{12}}:⟹x=12
{\dag{\underline{\boxed{\sf{x =12}}}}}†x=12
Hence, The value of x is 12.
\begin{gathered}\end{gathered}
{{\underline{\underline{\maltese\textbf{\textsf{\red{Verification}}}}}}}✠Verification
: \implies{\sf\bigg({\dfrac{x}{2} - 6}\bigg) = \bf\bigg({8 - \dfrac{2x}{3}} \bigg)}:⟹(2x−6)=(8−32x)
Substituting the value of x
: \implies{\sf\bigg({\dfrac{12}{2} - 6}\bigg) = \bf\bigg({8 - \dfrac{2 \times 12}{3}} \bigg)}:⟹(212−6)=(8−32×12)
: \implies{\sf\bigg({\dfrac{12}{2} - 6}\bigg) = \bf\bigg({8 - \dfrac{24}{3}} \bigg)}:⟹(212−6)=(8−324)
{: \implies{\sf\bigg({\dfrac{12 - (6 \times 2)}{2}}\bigg) = \bf\bigg({\dfrac{(8 \times 3) - 24}{3}} \bigg)}}:⟹(212−(6×2))=(3(8×3)−24)
{: \implies{\sf\bigg({\dfrac{12 -12}{2}}\bigg) = \bf\bigg({\dfrac{24 - 24}{3}} \bigg)}}:⟹(212−12)=(324−24)
{: \implies{\sf\bigg({\dfrac{0}{2}}\bigg) = \bf\bigg({\dfrac{0}{3}} \bigg)}}:⟹(20)=(30)
: \implies\sf{0} = \bf{0}:⟹0=0
\dag{\underline{\boxed{\sf{LHS=RHS}}}}†LHS=RHS
Hence Verified!!