English, asked by saileshrai, 4 months ago

both of my_ worked as servent for naicker families

Answers

Answered by Sankalp050
2

\huge\pink{\boxed{\green{\mathfrak{\overbrace{\underbrace{\fcolorbox{red}{aqua}{\underline{\pink{✯Answer✯}}}}}}}}}

Answered by Anonymous
4

Explanation:

Question : Prove that√5 is irrational.

Answer :

Let us assume that √5 is a rational number.

Sp it t can be expressed in the form p/q where p,q are co-prime integers and q≠0

⇒√5=p/q

On squaring both the sides we get,

⇒5=p²/q²

⇒5q²=p² —————–(i)

p²/5= q²

So 5 divides p

p is a multiple of 5

⇒p=5m

⇒p²=25m² ————-(ii)

From equations (i) and (ii), we get,

5q²=25m²

⇒q²=5m²

⇒q² is a multiple of 5

⇒q is a multiple of 5

Hence, p,q have a common factor 5. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number

√5 is an irrational number

Hence proved

Similar questions