Math, asked by faithyetty2170, 1 year ago

Bowley's index number is 150. Fisher's index number is 149.95. Paasche's index number is

Answers

Answered by idomenus
86

Answer:

154.

Step-by-step explanation:

Bowley's index number=150

Fisher's index number=149.95

Bowley index=\frac{l+p}{2}

Therefore,l+p=150*2

l+p=300                      [i]

Now,take the value of 'P' from the given question i.e,(i)158  (ii)154  (iii)148  (iv)156

Put these values in equation (i) one by one to get stastified value.

l+158=300                             [p=158]\\l=142\\F.I=\sqrt{142*158}\\ F.I\neq 149.78

If we put in equation (i) the value p=154

l+154=300                        [p=154]\\l=146\\F.I=\sqrt{146*154}\\ F.I=149.95\\149.95=149.95

Therefore,the paasche's index value is 154.

Similar questions