Math, asked by priyanshu5268, 1 year ago

bracket cosec - sin bracket sec - cos is equal to one upon tan A + cot a prove this identity

Answers

Answered by pinquancaro
13

We have to prove that:

(\csc A - \sin A)(\sec A - \cos A)=\frac{1}{\tan A+\cot A}

Consider LHS:

(\csc A - \sin A)(\sec A - \cos A)

= (\frac{1}{\sin A} - \sin A)(\frac{1}{\cos A}- \cos A)

= (\frac{1-\sin ^{2}A}{\sin A})(\frac{1-\cos ^{2}A}{\cos A})

By using the trigonometric identity \sin^2A+\cos^2A = 1

= (\frac{\cos ^{2}A}{\sin A})(\frac{\sin ^{2}A}{\cos A})

= \cos A \sin A

Consider RHS:

\frac{1}{\tan A+\cot A}

Converting in sin and cos form,

= \frac{1}{\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}}

= \frac{1}{\frac{\sin^2 A+\cos^2 A}{\cos A \sin A}}

= \frac{1}{\frac{1}{\cos A \sin A}}

= \cos A \sin A

So, LHS = RHS

Hence, proved.

Answered by harshdev2412
4

Answer:

Step-by-step explanation:

Similar questions