Math, asked by syush58t56, 1 year ago

brainly challange solve it.......

Attachments:

Answers

Answered by HarishAS
14
Hey friend, Harish here.

Here is your answer:

Given that:

 \alpha , \beta , \gamma \ or \ the \ roots\ of \ x^3 - 2x^2 -1=0.

→ T_n = ( \alpha )^n +  (\beta )^n + (\gamma)^n

To find:

The\ value\ of\  \frac{T_{11} - T_8 }{T_{10}}

Solution:

As α, β , γ are the roots ,  these will be satisfying the equation when substituted in place of x.

The we get, 

⇒  \alpha ^3 - 2 \alpha ^2 -1 = 0

⇒  \alpha ^3 -1 = 2 \alpha ^2   - (i)

⇒  \beta ^3 - 2  \beta ^2 - 1 =0

⇒  \beta ^3 - 1 = 2 \beta ^2   - (ii)

⇒ \gamma ^3 - 2\gamma ^2 -1 =0

⇒ \gamma ^3 - 1 =  2 \gamma ^2 - (iii)

Now,

 ⇒ \frac{T_{11} - T_8 }{T_{10}} =  \frac{[ \alpha ^{11} + \beta ^{11} + \gamma^{11} - \alpha ^{11} - \beta ^{11} - \gamma^{8}]}{(\alpha ^{10} + \beta ^{10} + \gamma^{10})}

⇒  \frac{\alpha ^{11} - \alpha ^8 + \beta ^{11} - \beta ^8 + \gamma^{11}- \gamma ^8}{\alpha ^{10} + \beta ^{10} + \gamma^{10}}

⇒  \frac{\alpha ^8(\alpha^3 -1) + \beta ^8 (\beta ^3 - 1) + \gamma ^8 (\gamma ^3 - 1)}{\alpha ^{10} + \beta ^{10} + \gamma^{10}}

Now substituting the values from (i) , (ii) , (iii) we get,

 \frac{2\alpha ^{10} + 2\beta ^{10} + 2\gamma^{10}}{\alpha ^{10} + \beta ^{10} + \gamma^{10}} =  \frac{2\times (\alpha ^{10} + \beta ^{10} + \gamma^{10})}{(\alpha ^{10} + \beta ^{10} + \gamma^{10})}

⇒ \frac{T_{11} - T_8 }{T_{10}} = 2.
____________________________________________________

Hope my  answer is helpful to you.
Similar questions