Math, asked by 0mathamatics0, 1 year ago

❤️BRAINLY CHALLENGE ❤️

In triangle ABC, AD is perpendicular to BC and point D lies on BC such that 2DB=3CD. Prove that:

5AB^2=5AC^2+BC^2

❤️50 point ❤️

Answers

Answered by Ashishkumar098
4

Answer :-

______________________________

Answer:

Step-by-step explanation:

Since ⊿ADB is a right triangle, we have 

AB² = AD² + DB². 

And since 2DB =3 CD, we know BC = BD + CD BC = 2/3 DB+DB  And DB = (3/5) CB. 

(1) AB² = AD² + 9/25 BC2. 

Similarly ⊿ADC is a right triangle, so 

AC² = AD² + DC², 

So Similarly, DC = BC - BDDC= BC (2/5), and 

(2) AC² = AD² + (4/25) BC², 

Subtract (1) by (2) 

AB² - AC² = (9 - 4)/25 BC² AB² - AC² = 1/5 BC² 5AB² - 5AC² = BC²

So 

5 AB² = 5 AC² + BC².

Attachments:
Answered by Anonymous
10
\sf\huge{\underline{\mathfrak{A_nswer}}}

\sf\huge{\underline{Question!}}

➡In triangle ABC, AD is perpendicular to BC and point D lies on BC such that 2DB=3CD. Prove that:

5AB^2=5AC^2+BC^2

\sf\bold{\underline{P_rooF!}}

Given: Consider ∆ABD,

such that,

AB^{2} = AD^{2} + BD^{2}==(1)

we have!

2DB = 3CD

Then, CD = \frac{2\times DB}{3}

from Figure!

BC = BD + CD

BC = BD +  \frac{2\times BD}{3}

BC = \frac{5\times BD}{3}

BD = \frac{3\times BC}{5}

Substituting in (1)

AB^{2} = AD^{2} + BD^{2}

AB^{2} = AD^{2} +\frac{3^{2}\times BC^{2}}{5^{2}}

AB^{2} = AD^{2} +\frac{9\times BC^{2}}{25} ==(2)

Similarly, in ∆ACD

we have

AC^{2} = AD^{2} + DC^{2}==(3)

From fig!

CD = BC - BD

since, BD = \frac{3}{2}CD

then..

CD = BC -\frac{3}{2}CD

BC = CD + \frac{3}{2}CD

BC = \frac{5}{2}CD

DC = \frac{2}{5}BC

substituting in (3)

AC^{2} = AD^{2} + DC^{2}

AC^{2} = AD^{2}+\frac{2^{2}}{5^{2}}BC^{2}

AC^{2} = AD^{2}+\frac{4}{25}BC^{2}==(4)

subtracting (4) from (2)

AC^{2} = AD^{2}+\frac{4}{25}BC^{2}

AB^{2} = AD^{2} +\frac{9\times BC^{2}}{25}

 AC^{2}-AB^{2}=\frac{4-9}{25}BC^{2}

AC^{2} - AB^{2} =\frac{-5}{25}BC^{2}

AC^{2} - AB^{2} =\frac{-1}{5}BC^{2}

AB^{2} - AC^{2} =\frac{1}{5}BC^{2}

5(AB^{2} - AC^{2})= BC^{2}

5\times AB^{2}-5\times AC^{2}= BC^{2}

 5\times AB^{2} =5\times AC^{2} + BC^{2}

£hence th¢ pr©©f!!
Attachments:

Unnati004: ...
Similar questions