Math, asked by BrainliestUser001, 1 month ago

# Brainly Moderators
# Brainly Challengers
# Brainly Teachers
# Brainly Math Aryabhatta

Please help
Don't spam please
Quality answer needed.

Find the relation between x and y such that the point (x, y) is equidistant from the point (3,6) and (-3, 4).​

Answers

Answered by Itzheartcracer
5

Given :-

point (x, y) is equidistant from the point (3,6) and (-3, 4).​

To Find :-

Find the relation between x and y

Solution :-

We know that

\sf D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

Let the distance be PR and PQ

For PR

\sf PR=\sqrt{\{x-(-3)\}^2+(y-4)^2}

\sf PR=\sqrt{(x+3)^2+(y-4)^2}

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

\sf PR=\sqrt{x^2+2(x)(3)+(3)^2+y^2-2(y)(4)+(-4)^2}

\sf PR=\sqrt{x^2+6x+9+y^2-8y+16}

\sf PR=\sqrt{x^2+6x+25+y^2-8y}

For PQ

\sf PQ=\sqrt{(x-3)^2+(y-6)^2}

\sf PQ=\sqrt{x^2-2(3)(x)+(3)^2+y^2-2(y)(6) + (6)^2}

\sf PQ=\sqrt{x^2-6x+9+y^2-12y+36}

\sf PQ=\sqrt{x^2-6x+45+y^2-12y}

On squaring

We get

\sf x^2 + 9 - 6x + y^2 + 36 - 12y = x^2 + 9 + 6x + y^2 + 16 - 8y

 \sf 9 - 6x+y^2+36-12y=9+6x+y^2+16-8y

\sf 45-6x+y^2-12y=25+6x+y^2-8y

\sf 45-25=12x+4y

\sf 20=12x+4y

Divide by 4

\sf\dfrac{20}{4}=\dfrac{12x+4y}{4}

\sf 5=3x+y

Answered by ripinpeace
7

 \rm{   {3x+y−5  = 0}}

Step-by-step explanation:

Given -

  • Point (x, y) is equidistant from the point (3,6) and (-3, 4).

To find -

  • Relation between x and y.

Solution -

We are give that the point (x, y) is equidistant from the point (3,6) and (-3, 4).

 \therefore \rm{PA = PB}

  \boxed{\rm{Distance  \:  formula =  \sqrt{{(x {\tiny{2}} - x {\tiny{1}}) ^{2} }{(y {\tiny{2}} - y {\tiny{1}}) ^{2} }}}}

putting values in the formula we get,

  \boxed{\longmapsto \rm{ \sqrt{(x - 3) ^{2}  + {(y - 6)}^{2}  } } = \rm{ \sqrt{(x   - ( -  3)) ^{2}  + {(y - 4)}^{2}  } }}

 \boxed{\longmapsto \rm{ \sqrt{(x - 3) ^{2}  + {(y - 6)}^{2}  } } = \rm{ \sqrt{(x   + 3) ^{2}  + {(y - 4)}^{2}  } }}

now squaring both sides,

  \boxed{ \rm \longmapsto{x}^{2}−6x+9+ {y}^{2} −12y+36= {x}^{2} +6x+9+ {y}^{2} −8y+16}

  \boxed{ \rm \longmapsto{x}^{2}−6x+9+ {y}^{2} −12y+36 - {x}^{2} -6x-9- {y}^{2} +8y-16 = 0 }

 \rm{ \longmapsto −12x−4y+20=0}

 \rm{ \longmapsto−4(3x+y−5) = 0}

 \rm{ \longmapsto  \bf\green {3x+y−5  = 0}}

More to know -

  • An equidistant point is a point that is an equal distance from two other points, but is not necessarily in the middle of two points.
Similar questions