Math, asked by bestquestions001, 1 month ago

❐ Brainly Moderators
❐ Brainly Stars
❐ Brainly Best Users

The base and hypotenuse of a right triangle are respectively 6cm and 10cm long.find the area ??

♣️ don't spam
♣️ full explanation needed
♣️ don't give copied answer
♣️ spammers id will be reported on the spot
 \\

Answers

Answered by itzgeniusgirl
27

Question :-

the base and hypotenuse of a right triangle are respectively 6cm and 10cm long find the area

Given :-

  • base = 6m
  • hypotenuse = 10cm

To find :-

  • area of the triangle

Solution :-

according to Pythagoras theorem

  • \mapsto \sf\boxed{\bold{\pink{ {h}^{2}  \:  =  {b}^{2}  +  {a}^{2}  }}} \:

where,

  • h = hypotenuse
  • b = base
  • a = altitude (height)

now, by putting values we get,

 \mapsto \rm \:  {10}^{2}  =  {6}^{2}  +  {a}^{2}  \\

\mapsto \rm {10}^{2}  -  {6}^{2}  =  {a}^{2}  \\

\mapsto \rm100 - 36 =  {a}^{2}  \\

\mapsto \rm64 =   {a}^{2}  \\

\mapsto \rm \: a = 8cm \\

here, we have all the sides of the triangle

  • 1st side of triangle = 6cm
  • 2nd side of triangle = 10cm
  • 3rd side of triangle = 8cm

now,

  • perimeter = sum of sides

now by putting values we get,

\mapsto \rm \: perimeter = 6 + 10 + 8cm \\  \\ \mapsto \rm \: perimeter = 24cm \\

now,

  • \mapsto \sf\boxed{\bold{\pink{ semi  - perimeter \:  =    \frac{perimeter}{2} }}}  \\

 \rightarrow \tt \: s =  \frac{24}{2}  \\  \\  \rightarrow \tt \: s = 12cm \\

now let's find area of triangle

by using heron's formula we get,

  • \mapsto \sf\boxed{\bold{\pink{  \sqrt{s(s - a)(s - b)(s - c)}   }}}  \\

where,

  • s = semi perimeter
  • a,b,c are side of the triangle

now, by putting values we get,

\rm :\longmapsto\: \sqrt{12(12 - 6)(12 - 10)(12 - 8)}  \\

\rm :\longmapsto\: \sqrt{2 \times 6 \times 2 \times 4}  \\

\rm :\longmapsto\:  \sqrt{2 \times 2 \times 3 \times 2 \times 2 \times 2}  \\

\rm :\longmapsto\: \sqrt{2 \times 2 \sqrt{3} \times 2 }  \\

\rm :\longmapsto\:4 \sqrt{6} cm^{2} \\

\rm :\longmapsto\:4 \times 6cm^{2}  \\

\rm :\longmapsto\:24cm \\

so therefore the area of the triangle = 24cm

Similar questions