``` Brainly Stars
``` Brainly Moderators
``` Other Best Users ...
$ \Large \tt \green{Question :}$
(1 + cos(x) + cos(2x)) / (sin(x) + sin(2x)) = cot(x)
#HelpASAP!!!
#NoSPAM!!!
Answers
Answered by
141
Given :-
To Find :-
Here, according to your question, It is given to prove the Identity.
Solution :-
We can prove the Identity by using the methods below,
$ \large \mathcal{LHS :}$
- Therefore,
$ \large \mathcal{: RHS}$
- Hence, Proved!!!
Thanks!!! :D
mddilshad11ab:
Perfect¶
Answered by
192
Given :-
- L.H.S = (1 + cos(x) + cos(2x))/(sin(x) + sin(2x))
- R.H.S = Cot(x)
To Show :-
- Left hand side = Right hand side :-]
Solution :-
- To proof L.H.S = R.H.S by simplifying L.H.S by applying trigonometry formula.
Calculation for L.H.S :-
↠ (1 + cos(x) + cos(2x))/(sin(x) + sin(2x))
- Cos2x = 2Cos²x - 1 , sin(2x) = 2sin(x).cos(x)
↠ (1 + cos(x) + 2cos²(x) - 1))/(sin(x) + 2sin(x).cos(x))
↠ (cos(x) + 2cos²(x))/(sin(x) + 2sin(x).cos(x))
- Taking common cos(x) at top. :-]
- Taking common sin(x) at bottom :-]
↠ {cos(x)(1 + 2cos(x))/{sin(x)(1 + 2cos(x))
- Cancelling (1 + 2cos(x)) here we get :-]
↠ cos(x)/sin(x) ↠ cot(x)
↠(1 + cos(x) + cos(2x))/(sin(x) + sin(2x)) = cot(x)
Hence, proved , L.H.S = R.H.S :-
Similar questions