Math, asked by MrPlatinum, 1 month ago

``` Brainly Stars
``` Brainly Moderators
``` Other Best Users ...
 \\
$ \Large \tt \green{Question :}$
(1 + cos(x) + cos(2x)) / (sin(x) + sin(2x)) = cot(x)
 \\
#HelpASAP!!!
#NoSPAM!!!​

Answers

Answered by PyschoHeart
141

Given :-

 \sf{\frac{(1 + cos(x) + cos(2x))}{  (sin(x) + sin(2x)) }= cot(x)}\\

 \\

To Find :-

Here, according to your question, It is given to prove the Identity.

 \\

Solution :-

We can prove the Identity by using the methods below,

 \tt{ \frac{(1 + cos(x) + cos(2x))}{  (sin(x) + sin(2x)) }= cot(x)} \\

$ \large \mathcal{LHS :}$

 \mapsto\tt{ \frac{1 + cos(x) + cos(2x)}{sin(x) + sin(2x)}}\\

 \mapsto \tt{ \frac{ 1 + cosx + 2cos^{2}x - 1 }{sinx + 2sinxcosx}}\\

 \mapsto \tt{ \frac{cosx(1 + 2cosx)  }{sinx(1 + 2cosx) }}\\

  • Therefore,

 \mapsto \tt{ \frac{ (1 + cosx + cos2x)}{(sinx + sin2x)} } \\

 \mapsto \tt{ \frac{cosx(1 + 2cosx)}{  sinx(1 + 2cosx) }} \\

 \mapsto \tt{ \frac{ cosx}{sinx}} \\

 \mapsto \tt{ cotx }

$ \large \mathcal{: RHS}$

  • Hence, Proved!!!

 \\  \\  \\

Thanks!!! :D


mddilshad11ab: Perfect¶
Answered by mddilshad11ab
192

Given :-

  • L.H.S = (1 + cos(x) + cos(2x))/(sin(x) + sin(2x))
  • R.H.S = Cot(x)

To Show :-

  • Left hand side = Right hand side :-]

Solution :-

  • To proof L.H.S = R.H.S by simplifying L.H.S by applying trigonometry formula.

Calculation for L.H.S :-

↠ (1 + cos(x) + cos(2x))/(sin(x) + sin(2x))

  • Cos2x = 2Cos²x - 1 , sin(2x) = 2sin(x).cos(x)

↠ (1 + cos(x) + 2cos²(x) - 1))/(sin(x) + 2sin(x).cos(x))

↠ (cos(x) + 2cos²(x))/(sin(x) + 2sin(x).cos(x))

  • Taking common cos(x) at top. :-]
  • Taking common sin(x) at bottom :-]

↠ {cos(x)(1 + 2cos(x))/{sin(x)(1 + 2cos(x))

  • Cancelling (1 + 2cos(x)) here we get :-]

↠ cos(x)/sin(x) ↠ cot(x)

↠(1 + cos(x) + cos(2x))/(sin(x) + sin(2x)) = cot(x)

Hence, proved , L.H.S = R.H.S :-

Similar questions