Math, asked by rohithkrhoypuc1, 20 days ago

Branlieast question
Answer the question which is in attachment


Irrelevant answer at a time deleted.

No spamming

(expecting answers from Maths Aryabatta and copy that, Mr.Magician, Mathsdude)​

Attachments:

Answers

Answered by mathdude500
16

\large\underline{\sf{Solution-}}

Given that,

\red{\rm :\longmapsto\:A =  \begin{gathered}\sf \left[\begin{array}{ccc}6&-2&2\\ - 2&3&-1\\2&-1&3\end{array}\right]\end{gathered}}

Now, We know

\rm :\longmapsto\:A = \dfrac{1}{2} (2A)

\rm :\longmapsto\:A = \dfrac{1}{2} (A + A)

\rm :\longmapsto\:A = \dfrac{1}{2} (A + A + A' - A')

\rm :\longmapsto\:A = \dfrac{1}{2} (A + A'+ A - A')

\rm :\longmapsto\:A = \dfrac{1}{2} (A + A')+ \dfrac{1}{2} (A - A')

Let we assume that,

\red{\rm :\longmapsto\:A = P + Q}

where,

\red{\rm :\longmapsto\:P = \dfrac{1}{2} (A + A')}

and

\green{\rm :\longmapsto\:Q = \dfrac{1}{2} (A  -  A')}

Now,

Let we first evaluate the value of P.

We have

\red{\rm :\longmapsto\:A =  \begin{gathered}\sf \left[\begin{array}{ccc}6&-2&2\\ - 2&3&-1\\2&-1&3\end{array}\right]\end{gathered}}

So,

\red{\rm :\longmapsto\:A' =  \begin{gathered}\sf \left[\begin{array}{ccc}6&-2&2\\ - 2&3&-1\\2&-1&3\end{array}\right]\end{gathered}}

Now, Consider,

\red{\rm :\longmapsto\:A + A' =  \begin{gathered}\sf \left[\begin{array}{ccc}6&-2&2\\ - 2&3&-1\\2&-1&3\end{array}\right]\end{gathered} + \begin{gathered}\sf \left[\begin{array}{ccc}6&-2&2\\ - 2&3&-1\\2&-1&3\end{array}\right]\end{gathered}}

\red{\rm :\longmapsto\:A + A' = \begin{gathered}\sf \left[\begin{array}{ccc}12&-4&4\\ - 4&6&-2\\4&-2&6\end{array}\right]\end{gathered}}

Now, we have

\red{\rm :\longmapsto\:P = \dfrac{1}{2} (A + A')}

 \red{\bf\implies \:P = \begin{gathered}\sf \left[\begin{array}{ccc}6&-2&2\\ - 2&3&-1\\2&-1&3\end{array}\right]\end{gathered}}

Now,

\red{\rm :\longmapsto\:P' = \begin{gathered}\sf \left[\begin{array}{ccc}6&-2&2\\ - 2&3&-1\\2&-1&3\end{array}\right]\end{gathered} = P}

\red{\bf :\longmapsto\:P \: is \: symmetric}

Now, we evaluate the value of Q

We have,

\green{\rm :\longmapsto\:A =  \begin{gathered}\sf \left[\begin{array}{ccc}6&-2&2\\ - 2&3&-1\\2&-1&3\end{array}\right]\end{gathered}}

So,

\green{\rm :\longmapsto\:A' =  \begin{gathered}\sf \left[\begin{array}{ccc}6&-2&2\\ - 2&3&-1\\2&-1&3\end{array}\right]\end{gathered}}

Now,

\green{\rm :\longmapsto\:A - A' =  \begin{gathered}\sf \left[\begin{array}{ccc}6&-2&2\\ - 2&3&-1\\2&-1&3\end{array}\right]\end{gathered} - \begin{gathered}\sf \left[\begin{array}{ccc}6&-2&2\\ - 2&3&-1\\2&-1&3\end{array}\right]\end{gathered}}

\green{\rm :\longmapsto\:A - A' =  \begin{gathered}\sf \left[\begin{array}{ccc}0&0&0\\ 0&0&0\\0&0&0\end{array}\right]\end{gathered} }

Now, we have

\green{\rm :\longmapsto\:Q = \dfrac{1}{2} (A  -  A')}

\green{\rm :\longmapsto\:Q = \dfrac{1}{2}\begin{gathered}\sf \left[\begin{array}{ccc}0&0&0\\ 0&0&0\\0&0&0\end{array}\right]\end{gathered} }

 \green{\bf\implies \:Q = \begin{gathered}\sf \left[\begin{array}{ccc}0&0&0\\ 0&0&0\\0&0&0\end{array}\right]\end{gathered} }

Now, Consider,

\green{\rm :\longmapsto\:Q' = \begin{gathered}\sf \left[\begin{array}{ccc}0&0&0\\ 0&0&0\\0&0&0\end{array}\right]\end{gathered} =  - Q }

\green{\bf :\longmapsto\:Q \: is \: Skew - Symmetric}

Hence,

 \purple{\rm :\longmapsto\:\begin{gathered}\sf \left[\begin{array}{ccc}6&-2&2\\ - 2&3&-1\\2&-1&3\end{array}\right]\end{gathered} = \begin{gathered}\sf \left[\begin{array}{ccc}6&-2&2\\ - 2&3&-1\\2&-1&3\end{array}\right]\end{gathered} + \begin{gathered}\sf \left[\begin{array}{ccc}0&0&0\\ 0&0&0\\0&0&0\end{array}\right]\end{gathered} }

Similar questions