Chemistry, asked by bsbb1566, 1 year ago

Bromine monochloride, BrCl decomposes into bromine and chlorine and reaches the equilibrium 2BrCl(g) \rightleftharpoons Br_{2}(g)+Cl_{2}(g) for which Kc = 32 at 500K. If initially pure BrCl is present at a concentration of 3.3 × 10^{-3} mol L^{-1}, what is its molar concentration in the mixture at equilibrium ?

Answers

Answered by phillipinestest
1

Given,

Initial concentration of the mixture =\quad 3.30\quad \times \quad { 10 }^{ -3 }\quad { mol }/{ L }

2Br{ Cl }_{ (g) }\quad \rightarrow \quad { Br }_{ 2(g) }\quad +\quad { Cl }_{ 2(g) }

At equilibrium, \left( 3.30\quad \times \quad { 10 }^{ -3 }\quad -\quad \left( x \right) \right) \quad { mol }/{ L }

{ K }_{ c }\quad =\quad \frac { \left( \frac { x }{ 2 } \right) \left( \frac { x }{ 2 } \right) }{ { \left( 3.30\quad \times \quad { 10 }^{ -3 }\quad -\quad \left( x \right) \right) }^{ 2 } }

Where, given { K }_{ c } at 500K is 32

So, 32\quad =\quad \frac { { x }^{ 2 } }{ \left( 4\quad \times \quad \left( 3.30\quad \times \quad { 10 }^{ -3 } \right) \right) \quad -\quad x }

By simplifying the above equation, we get 5.60

x\quad =\quad 11.32\quad \left( \left( 3.30\quad \times \quad { 10 }^{ -3 } \right) \quad -\quad x \right)

x\quad =\quad 3.0\quad \times \quad { 10 }^{ -3 }

At equilibrium, [BrCl] =\quad \left( 3.30\quad \times \quad { 10 }^{ -3 } \right) \quad -\quad \left( 3.0\quad \times \quad { 10 }^{ -3 } \right)

=\quad \left( 0.30\quad \times \quad { 10 }^{ -3 } \right)

=\quad 3.0\quad \times \quad { 10 }^{ -4 }\quad { mol }/{ L }

Similar questions