Chemistry, asked by Uvnar585, 1 year ago

Calculate \triangle G^ \ominus and the equilibrium constant for the formation of NO_{2} from NO and O_{2} at 298K,  NO(g)+\frac{1}{2}O_2\rightleftharpoons NO_2(g) where \triangle G ^ \ominus (NO_{2}) = 52 .0 kJ/mol, \triangle G ^ \ominus(NO) = 87.0 kJ/mol, \triangle G ^ \ominus (O_{2})= 0 kJ/mol

Answers

Answered by phillipinestest
0

{ NO }_{ 2(g) }\quad +\quad \cfrac { 1 }{ 2 } { O }_{ 2(g) }\quad \rightarrow \quad { NO }_{ 2(g) }

Given,

{ \Delta }_{ f }{ G }^{ \circ }\left( { NO }_{ 2 } \right) \quad =\quad 52.0\quad \sfrac { KJ }{ mol }

{ \Delta }_{ f }{ G }^{ \circ }\left( { NO } \right) \quad =\quad 87.0\quad \sfrac { KJ }{ mol }

{ \Delta }_{ f }{ G }^{ \circ }\left( { O }_{ 2 } \right) \quad =\quad 0\quad \sfrac { KJ }{ mol }

We know that, { \Delta G }^{ \circ }\quad =\quad RT\quad \log { { K }_{ c } }

{ \Delta G }^{ \circ }\quad =\quad 2.303\quad RT\quad \log { { K }_{ c } }  

{ K }_{ c }\quad =\quad \frac { -35.0\quad \times \quad { 10 }^{ -3 } }{ -2.303\quad \times \quad 8.3114\quad \times \quad 298 } \quad

By simplifying, we get Kc the equilibrium constant value =\quad 1.36\quad \times \quad { 10 }^{ 6 }


Similar questions