Math, asked by haki6666, 1 year ago

Brut
2. Find the value of root 12 following up to 3 decimal places if root 3 is 1.732

Answers

Answered by sanketj
1

 \sqrt{12 } =  \sqrt{4 \times 3}  =  \sqrt{4}  \times  \sqrt{3}  = 2 \times  \sqrt{3}  \\  \sqrt{12}  = 2 \times 1.732 \\  \sqrt{12}  = 3.464

Answered by payalchatterje
0

Answer:

Required value of √12 is 3.464.

Step-by-step explanation:

Here we want to find value of

 \sqrt{12}

Given value of

 \sqrt{3}  = 1.732

Now,

 \sqrt{12}  \\  =  \sqrt{2 \times 2 \times 3 }  \\  = 2 \sqrt{3}  \\  = 2 \times 1.732 \\  = 3.464

This is a problem of Algebra.

Some important Algebra formulas:

{(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2} \\  {(x  -  y)}^{2}  =  {x}^{2}   -  2xy +  {y}^{2} \\  {(x  + y)}^{3}  =  {x}^{3}  + 3 {x}^{2} y + 3x {y}^{2}  +  {y}^{3}  \\   {(x   -  y)}^{3}  =  {x}^{3}   -  3 {x}^{2} y + 3x {y}^{2}   -  {y}^{3} \\  {x}^{3}  +  {y}^{3}  =  {(x  +  y)}^{3}  - 3xy(x + y) \\ {x}^{3}   -  {y}^{3}  =  {(x   -   y)}^{3}   +  3xy(x  -  y) \\  {x}^{2}  -  {y}^{2}  = (x + y)(x - y) \\    {x}^{2}  +  {y}^{2}  =  {(x - y)}^{2}   + 2xy \\ {x}^{2}   -  {y}^{2}  =  {(x   + y)}^{2}  - 2xy \\  {x}^{3}  -  {y}^{3}  = (x - y)( {x}^{2}  + xy +  {y}^{2} ) \\ {x}^{3}   +   {y}^{3}  = (x - + y)( {x}^{2}   -  xy +  {y}^{2} )

Know more about Algebra,

1) https://brainly.in/question/13024124

2) https://brainly.in/question/1169549

#SPJ2

Similar questions