Math, asked by slbd, 1 year ago

bx/a+ay/b=a^2+b^2; x+y=2ab


Lucky9112: bx/a + ay/b = a2 + b2 ......... eq1

x + y = 2ab .... eq 2..

frm eq 1.. b2x + a2y / ab = a2 + b2

-> b2x + a2y = a3b + b3a

-> b2x - b3a = a3b - a2y

->b2 ( x - ab ) = a2 ( ab - y )

-> frm eq 2 ... b2 ( x - x/2 + y/2 ) = a2 ( x/2 + y/2 - y )

-> b2 ( x/2 - y/2 ) = a2 ( x/2 - y/2 )

-> b2x - b2y = a2x - a2y

-> x ( b2 - a2 ) = y ( b2 - a2 )

-> x = y ..

put the value of x in eq 2.... 2y = 2ab

hope this will help!

Answers

Answered by isyllus
168

Answer:

The solution of system of equation x=ab and y=ab

Step-by-step explanation:

Given: System of equation

\frac{b}{a}x+\frac{a}{b}y=a^2+b^2---------(1)

x+y=2ab-----------(2)

Using elimination method to solve for x and y

Multiply second equation by -b/a to eliminate x

-\frac{b}{a}x-\frac{b}{a}y=-\frac{b}{a}\cdot 2ab

\frac{b}{a}x+\frac{a}{b}y=a^2+b^2

Add both equation to eliminate x

\frac{a}{b}y-\frac{b}{a}y=a^2+b^2-\frac{b}{a}\cdot 2ab

y(\dfrac{a^2-b^2}{ab})=a^2-b^2

y=ab

Substitute y=ab into equation (2)

x+ab=2ab

x=ab

Hence, The solution of system of equation x=ab and y=ab

Answered by poojagupta0117
46

Hope it helps

Here is ur answer

Attachments:
Similar questions