Math, asked by amanchoudhary174187, 10 months ago

by applying the chain rule , find the derivative x-1/√x+1=?

Answers

Answered by BrainlyIAS
1

Answer:

\frac{dy}{dx}=\frac{3\sqrt{x} }{2}+\frac{1}{2\sqrt{x} }+1

Formula :

  • \frac{d}{dx}(uv)=u \frac{dv}{dx}+v\frac{du}{dx}\\\\
  • \frac{d}{dx}(\sqrt{x} ) =\frac{1}{2\sqrt{x} }
  • \frac{d}{dx} (constant)=0

To Find :   \frac{dy}{dx}   of   \frac{x+1}{\sqrt{x}+1 }

Step-by-step explanation:

Let ,

y=\frac{x+1}{\sqrt{x}+1 } \\\\=>\frac{dy}{dx}= (x+1).\frac{d}{dx}( \sqrt{x}+1)+(\sqrt{x}+1).\frac{d}{dx}(x+1) \\\\=>\frac{dy}{dx}=(x+1)(\frac{1}{2\sqrt{x} } )+(\sqrt{x} +1)(1)\\\\=>\frac{dy}{dx}=\frac{\sqrt{x}}{2}+\frac{1}{2\sqrt{x} }  +\sqrt{x} +1\\\\=>\frac{dy}{dx}=\frac{3\sqrt{x} }{2}+\frac{1}{2\sqrt{x} }+1

>>> Hope Helps You <<<

Similar questions