Math, asked by maysha56, 1 year ago

by elimination method​

Attachments:

Answers

Answered by ayansh3285
1

Step-by-step explanation:

11x + 15y + 23 = 0..........(i) \times 7 \\ 7x - 2y - 20..........(ii) \times 11 \\ equation(i) \times 7 - (ii) \times 11 \\ 77 x + 105 y + 161 \\ 77x - 22y - 220 \\  -  \:  \:  \:  \:  \:  +  \:  \:  \:  \:  \:  \:  \:  +  \\  \frac{}{ \:  \:  \:  \:  \:  \: 127y + 381 = 0}  \\ 127y =  - 381 \\ y =-3  \\ value \: of \: y  \: put \: in \: any \: equation \: then \: the \: value \: of \: x \: will \: come.


maysha56: but the ans is wrong
Answered by AbhijithPrakash
5

Answer:

11x+15y+23=0,\:7x-2y-20=0\quad :\quad y=-3,\:x=2

Step-by-step explanation:

\begin{bmatrix}11x+15y+23=0\\ 7x-2y-20=0\end{bmatrix}

\mathrm{Arrange\:equation\:variables\:for\:elimination}

\begin{bmatrix}11x+15y=-23\\ 7x-2y=20\end{bmatrix}

\mathrm{Multiply\:}11x+15y=-23\mathrm{\:by\:}7:\quad 77x+105y=-161

\mathrm{Multiply\:}7x-2y=20\mathrm{\:by\:}11:\quad 77x-22y=220

\begin{bmatrix}77x+105y=-161\\ 77x-22y=220\end{bmatrix}

77x-22y=220

-

\underline{77x+105y=-161}

-127y=381

\begin{bmatrix}77x+105y=-161\\ -127y=381\end{bmatrix}

\mathrm{Solve}\:-127y=381\:\mathrm{for}\:y

-127y=381

\mathrm{Divide\:both\:sides\:by\:}-127

\frac{-127y}{-127}=\frac{381}{-127}

\mathrm{Simplify}

y=-3

\mathrm{For\:}77x+105y=-161\mathrm{\:plug\:in\:}\quad \:y=-3

\mathrm{Solve}\:77x+105\left(-3\right)=-161\:\mathrm{for}\:x

77x+105\left(-3\right)=-161

\mathrm{Remove\:parentheses}:\quad \left(-a\right)=-a

77x-105\cdot \:3=-161

\mathrm{Multiply\:the\:numbers:}\:105\cdot \:3=315

77x-315=-161

\mathrm{Add\:}315\mathrm{\:to\:both\:sides}

77x-315+315=-161+315

\mathrm{Simplify}

77x=154

\mathrm{Divide\:both\:sides\:by\:}77

\frac{77x}{77}=\frac{154}{77}

\mathrm{Simplify}

x=2

\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}

y=-3,\:x=2

Attachments:

maysha56: tysm
AbhijithPrakash: NP :)
Similar questions