Math, asked by supriya534, 8 months ago

by Rationalise the denominator 1/3 -2 root2​

Answers

Answered by amankumaraman11
2

We have,

  • To rationalize  \frac{1}{3  - 2 \sqrt{2}  }

Here,

  • For this purpose, we need to multiply the fraction with 3 + 2√2 so as to eradicate 2√2 from denominator.

Thus,

 \bf  \frac{1}{3 - 2 \sqrt{2} }  \times  \frac{3  + 2 \sqrt{2}}{3  +  2 \sqrt{2}}  \\  \\  \tt \frac{3 + 2 \sqrt{2} }{(3 - 2 \sqrt{2})(3  -  2 \sqrt{2})}

  • Denominator is in form (a + b)(a - b), so, identity applied will be

 \bull \:  \:  \rm \pink{ {a}^{2}   -  {b}^{2} } =  \blue{(a + b)(a - b)}

Now,

 \to \tt \frac{3 + 2 \sqrt{2} }{ {(3)}^{2}  -  {(2 \sqrt{2} )}^{2} }  \\  \\ \to  \tt \frac{3 + 2 \sqrt{2} }{9 - 8}   \\  \\  \to \bf \red{  3 + 2 \sqrt{2} }

Hence,

  • Rationalised fraction of  \sf \frac{1}{3  - 2 \sqrt{2}  } will be  \sf 3 + 2 \sqrt{2}
Similar questions