Math, asked by PragyaTbia, 1 year ago

By using the properties of definite integrals,evaluate the integrals: \int^\frac{\pi}{2}_0 \frac {{sin^{\frac32}\ x\ dx}}{{sin^{\frac32}\ x+cos^{\frac32}\ x}} \, dx

Answers

Answered by MaheswariS
1

Answer:

Step-by-step explanation:

concept:

\int\limits^{\frac{\pi}{2}}_0{f(x)\:dx=\int\limits^{\frac{\pi}{2}}_0{f(\frac{\pi}{2}-x)\:dx

Let,

I=\int\limits^{\frac{\pi}{2}}_0{\frac{sin^{\frac{3}{2}}x}{sin^{\frac{3}{2}}x+cos^{\frac{3}{2}}x}\:dx.............(1)

By properties of definite integral,

I=\int\limits^{\frac{\pi}{2}}_0{\frac{sin^{\frac{3}{2}}(\frac{\pi}{2}-x)}{sin^{\frac{3}{2}}(\frac{\pi}{2}-x)+cos^{\frac{3}{2}}(\frac{\pi}{2}-x)}\:dx

I=\int\limits^{\frac{\pi}{2}}_0{\frac{cos^{\frac{3}{2}}x}{cos^{\frac{3}{2}}x+sin^{\frac{3}{2}}x}\:dx............(2)

Adding (1) and (2) we get

2I=\int\limits^{\frac{\pi}{2}}_0[\frac{sin^{\frac{3}{2}}x}{sin^{\frac{3}{2}}x+cos^{\frac{3}{2}}x}+{\frac{cos^{\frac{3}{2}}x}{cos^{\frac{3}{2}}x+sin^{\frac{3}{2}}x}]\:dx

2I=\int\limits^{\frac{\pi}{2}}_0[\frac{sin^{\frac{3}{2}}x+cos^{\frac{3}{2}}x}{sin^{\frac{3}{2}}x+cos^{\frac{3}{2}}x}]\:dx

2I=\int\limits^{\frac{\pi}{2}}_0{1}\:dx\\\\2I=[x]^{\frac{\pi}{2}}_0\\\\2I=\frac{\pi}{2}\\\\I=\frac{\pi}{4}

Similar questions