Math, asked by PragyaTbia, 1 year ago

By using the properties of definite integrals,evaluate the integrals: \int^\frac{\pi}{2}_0 \frac{cos^{5}\ x\ dx}{sin^{5}\ x+cos^{5}\ x} \, dx

Answers

Answered by brunoconti
0

Answer:

Step-by-step explanation:

hhh

Attachments:
Answered by MaheswariS
0

Answer:

\bf\int^\frac{\pi}{2}_0 \frac{cos^{5}x}{sin^{5}x+cos^{5}x}\:dx=\frac{\pi}{4}

Step-by-step explanation:

Let

I=\int^\frac{\pi}{2}_0 \frac{cos^{5}x}{sin^{5}x+cos^{5}x}\:dx.........(1)

Using the properties of definite integrals

\boxed{\int\limits^a_0\:f(x)\:dx=\int\limits^a_0\:f(a-x)\:dx}

I=\int^\frac{\pi}{2}_0 \frac{cos^{5}(\frac{\pi}{2}-x)}{sin^{5}(\frac{\pi}{2}-x)+cos^{5}(\frac{\pi}{2}-x)}\:dx

I=\int^\frac{\pi}{2}_0 \frac{sin^{5}x}{cos^{5}x+sin^{5}x}\:dx

I=int^\frac{\pi}{2}_0 \frac{sin^{5}x}{sin^{5}x+cos^{5}x}\:dx..........(2)

Adding (1) and (2)

2I=\int^\frac{\pi}{2}_0 \frac{cos^{5}x}{sin^{5}x+cos^{5}x}\:dx+\int^\frac{\pi}{2}_0 \frac{sin^{5}x}{sin^{5}x+cos^{5}x}\:dx

\implies\:2I=\int^\frac{\pi}{2}_0 \frac{cosx^{5}x+sin^{5}x}{sin^{5}x+cos^{5}x}\:dx

\implies\:2I=\int^\frac{\pi}{2}_0\:dx

\implies\:2I=[x]^\frac{\pi}{2}_0

\implies\:2I=\frac{\pi}{2}-0

\implies\:2I=\frac{\pi}{2}

\implies\:I=\frac{\pi}{4}

\implies\boxed{\bf\int^\frac{\pi}{2}_0 \frac{cos^{5}x}{sin^{5}x+cos^{5}x}\:dx=\frac{\pi}{4}}

Similar questions