Math, asked by PragyaTbia, 1 year ago

By using the properties of definite integrals,evaluate the integrals: \int^1_0 {x(1-x)^n} \, dx

Answers

Answered by MaheswariS
0

Answer:

\bf\int^1_0 {x(1-x)^n}\:dx=\frac{1}{(n+1)(n+2)}

Step-by-step explanation:

Let

I=\int^1_0 {x(1-x)^n}\:dx

Using the properties of definite integrals

\boxed{\int\limits^a_0\:f(x)\:dx=\int\limits^a_0\:f(a-x)\:dx}

I=\int^1_0 {(1-x)(1-(1-x))^n}\:dx

I=\int^1_0 {(1-x)(1-1+x)^n}\:dx

I=\int^1_0 {(1-x)x^n}\:dx

I=\int^1_0 {[x^n-x^{n+1}]}\:dx

I= [\frac{x^{n+1}}{n+1}-\frac{x^{n+2}}{n+2}]^1_0

I= [\frac{1^{n+1}}{n+1}-\frac{1^{n+2}}{n+2}]-[\frac{0^{n+1}}{n+1}-\frac{0^{n+2}}{n+2}]

I= [\frac{1}{n+1}-\frac{1}{n+2}]-[0-0]

I=\frac{n+2-n-1}{(n+1)(n+2)}

I=\frac{1}{(n+1)(n+2)}

\implies\:\boxed{\int^1_0 {x(1-x)^n}\:dx=\frac{1}{(n+1)(n+2)}}

Answered by ujalasingh385
0

Answer:

\mathbf{ = \frac{1}{(n+1)(n+2)}}

Step-by-step explanation:

In this question,

By using the properties of definite integrals we have to evaluate the integrals

I = \int^1_0 {x(1-x)^n}\:dx

Using the properties of definite integrals

[tex]\mathbf{{\int\limits^a_0\:f(x)\:dx=\int\limits^a_0\:f(a-x)\:dx} }[/tex]

[tex]I=\int^1_0 {(1-x)(1-(1-x))^n}\:dx [/tex]

[tex]I=\int^1_0 {(1-x)(1-1+x)^n}\:dx [/tex]

I=\int^1_0 {(1-x)x^n}\:dx

I=\int^1_0 {[x^n-x^{n+1}]}\:dx

[tex]I= [\frac{x^{n+1}}{n+1}-\frac{x^{n+2}}{n+2}]^1_0 [/tex]

[tex]I= [\frac{1^{n+1}}{n+1}-\frac{1^{n+2}}{n+2}]-[\frac{0^{n+1}}{n+1}-\frac{0^{n+2}}{n+2}] [/tex]

I= [\frac{1}{n+1}-\frac{1}{n+2}]-[0-0]

I=\frac{n+2-n-1}{(n+1)(n+2)}

[tex]I=\frac{1}{(n+1)(n+2)} [/tex]

\implies\:\mathbf{\int^1_0 {x(1-x)^n}\:dx=\frac{1}{(n+1)(n+2)}}

Similar questions