By using the properties of definite integrals,evaluate the integrals:
Answers
Answered by
0
Answer:
Step-by-step explanation:
Let
Using the properties of definite integrals
Answered by
0
Answer:
Step-by-step explanation:
In this question,
By using the properties of definite integrals we have to evaluate the integrals
I =
Using the properties of definite integrals
[tex]\mathbf{{\int\limits^a_0\:f(x)\:dx=\int\limits^a_0\:f(a-x)\:dx} }[/tex]
[tex]I=\int^1_0 {(1-x)(1-(1-x))^n}\:dx [/tex]
[tex]I=\int^1_0 {(1-x)(1-1+x)^n}\:dx [/tex]
[tex]I= [\frac{x^{n+1}}{n+1}-\frac{x^{n+2}}{n+2}]^1_0 [/tex]
[tex]I= [\frac{1^{n+1}}{n+1}-\frac{1^{n+2}}{n+2}]-[\frac{0^{n+1}}{n+1}-\frac{0^{n+2}}{n+2}] [/tex]
[tex]I=\frac{1}{(n+1)(n+2)} [/tex]
Similar questions