Math, asked by PragyaTbia, 1 year ago

By using the properties of definite integrals,evaluate the integrals: \int^2_0 {x \sqrt{2-x}} \, dx

Answers

Answered by MaheswariS
0

Answer:

Step-by-step explanation:

Formula used:

\int{x^n}\:dx=\frac{x^{n+1}}{n+1}+c

Now,

\int\limits^2_0{x\sqrt{2-x}}\:dx\\\\=\int\limits^2_0{[2-(2-x)]\sqrt{2-x}}\:dx\\\\=\int\limits^2_0{[2-(2-x)](2-x)^{\frac{1}{2}}}\:dx

=\int\limits^2_0{[2(2-x)^{\frac{1}{2}}-(2-x)^{\frac{3}{2}}]}\:dx

=[2\frac{(2-x)^{\frac{3}{2}}}{\frac{3}{2}}-\frac{(2-x)^{\frac{5}{2}}}{\frac{5}{2}}]^2_0

=[2\frac{(2-2)^{\frac{3}{2}}}{\frac{3}{2}}-\frac{(2-2)^{\frac{5}{2}}}{\frac{5}{2}}]-[2\frac{(2-0)^{\frac{3}{2}}}{\frac{3}{2}}-\frac{(2-0)^{\frac{5}{2}}}{\frac{5}{2}}]

=-[\frac{2}{3}2^{\frac{5}{2}}-\frac{2}{5}2^{\frac{5}{2}}]

=-[\frac{2}{3}-\frac{2}{5}]2^{\frac{5}{2}}

=-[\frac{10-6}{15}]2^{\frac{5}{2}}

=-[\frac{4}{15}]2^{\frac{5}{2}}

Similar questions