Math, asked by PragyaTbia, 1 year ago

By using the properties of definite integrals,evaluate the integrals: \int^a_0 {\frac{\sqrt{x}}{\sqrt{x}+\sqrt{a- x}} \, dx

Answers

Answered by MaheswariS
0

Answer:

\frac{a}{2}

Step-by-step explanation:

concept:\\\\\int\limits^a_0{f(x)}\:dx=\int\limits^a_0{f(a-x)\:dx

Let,\\I=\int\limits^a_0{\frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}\:dx.............(1)

By properties of definite integrals

I=\int\limits^a_0{\frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}}\:dx

I=\int\limits^a_0{\frac{\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}}\:dx...........(2)

Adding (1) and (2)

2I=\int\limits^a_0{\frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}\:dx+\int\limits^a_0{\frac{\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}}\:dx

2I=\int\limits^a_0[\frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}+\frac{\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}}]\:dx

2I=\int\limits^a_0[\frac{\sqrt{x}+\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}}\:dx

2I=\int\limits^a_0{dx}\\\\2I=[x]^a_0\\\\2I=a\\\\I=\frac{a}{2}

Similar questions