Math, asked by ankitmeena880063, 10 months ago

By using the quadratic formula solve quadratic equation y² + 1/2 y -1 =0​

Answers

Answered by Anonymous
4

Answer:-

\sf{\frac{-1+\sqrt17}{4} \ and \ \frac{-1-\sqrt17}{4} \ are \ the \ roots.}

Given:

  • The given quadratic equation is \sf{y^{2}+\frac{1y}{2}-1=0}

To find:

  • Roots of the equation.

Solution:

\sf{The \ given \ quadratic \ equation \ is}

\sf{y^{2}+\frac{1y}{2}-1=0}

\sf{Here, \ a=1, \ b=\frac{1}{2} \ and \ c=-1}

\sf{b^{2}-4ac=(\frac{1}{2})^{2}-4(1)(-1)}

\sf{\therefore{b^{2}-4ac=\frac{1}{4}+4}}

\sf{\therefore{b^{2}-4ac=\frac{1+16}{4}}}

\sf{\therefore{b^{2}-4ac=\frac{17}{4}}}

\sf{By \ formula \ method}

\sf{y=\frac{-b+\sqrt{b^{2}-4ac}}{2} \ or \ \frac{-b-\sqrt{b^{2}-4ac}}{2}}

\sf{\therefore{y=\frac{\frac{-1}{2}+\frac{\sqrt17}{2}}{2} \ or \ \frac{\frac{-1}{2}-\frac{\sqrt17}{2}}{2}}}

\sf{\therefore{y=\frac{-1+\sqrt17}{4} \ or \ \frac{-1-\sqrt17}{4}}}

\sf\purple{\tt{\therefore{\frac{-1+\sqrt17}{4} \ and \ \frac{-1-\sqrt17}{4} \ are \ the \ roots.}}}

Similar questions