By what number should [(-7/2)³]-³ be multiplied to obtain (-2/7)⁴.
Answers
Step-by-step explanation:
let that number be X
[(-7/2)^3]^3 = (-7/2)^9
According to question,
(-7/2)^9 * x = (-2/7)^4
x = (-2/7)^4 / (-7/2)^9
x = (-2/7)^4 * (2/-7)^9
x = (-2/7)^4 * (-2/7)^9
x = (-2/7)^4+9
x = (-2/7)^13
required number = (-2/7)^13
Before Solving The problem Let see some Power & Exponents formula :-
→ x^1 = x
→ x^0 = 1
→ x^(-1) = 1/x
→ x^m*x^n = x^(m+n)
→ x^m/x^n = x^(m-n)
→ (x^m)^n = x^(mn)
→ (xy)^n = x^n*y^n
→ (x/y)^n = x^n/y^n
→ x^(-n) = (1/x)^n
Solution :-
Let us Assume That, we multiply [(-7/2)³]^(-3) By x , to obtain (-2/7)⁴.
So,
→ [(-7/2)³]^(-3) * x = (-2/7)⁴.
using (x^m)^n = x^(mn) in LHS now,
→ (-7/2)^[3 * (-3)] * x = (-2/7)⁴.
→ (-7/2)^(-9) * x = (-2/7)^4
using x^(-n) = (1/x)^n in LHS now,
→ 1/(-7/2)^9 * x = (-2/7)^4
→ (-2/7)^9 * x = (-2/7)^4
→ x = (-2/7)^4 ÷ (-2/7)^9
using x^m/x^n = x^(m-n) in RHS now, we get,
→ x = (-2/7)^(4 - 9)
→ x = (-2/7)^(-5)
using x^(-n) = (1/x)^n in Last, we get,
→ x = 1/(-2/7)^5