Math, asked by sujitmou, 1 month ago

(c) (-4, -1), (-1, -1), (-1, 2) and (a, b) are
the vertices of a square. Find a, b and
the length of diagonal of a square.[4]​

Answers

Answered by mathdude500
5

Given :-

Let us assume the vertices of square as A, B, C, D such that

  • A (- 4, - 1)

  • B (- 1, - 1)

  • C (- 1, 2)

and

  • D (a, b)

To Find :-

  • Value of a and b

  • Length of diagonal

Concept Used :-

  • In order to find the values of a and b from the given vertices of A, B, C, D taken in order forms a square, we have to used the concept, midpoint of AC is equals to midpoint of BD as diagonals bisect each other in square.

\large\underline{\bf{Solution-}}

Given that vertices of square ABCD are

  • A (- 4, - 1)

  • B (- 1, - 1)

  • C (- 1, 2)

and

  • D (a, b)

We know,

Midpoint Formula :-

Let us consider a line segment joining the points A and B and let C (x, y) be the midpoint of AB, then coordinates of C is

\boxed{ \quad\sf \:( x, y) = \bigg(\dfrac{x_1+x_2}{2} , \dfrac{y_1+y_2}{2} \bigg) \quad}</p><p>

\sf \: where \: coordinates \: of \: A \: and \: B \: are \: (x_1,y_1) \: and \: B(x_2,y_2)

Let us first find midpoint of AC.

  • Coordinates of A = ( - 4, - 1)

  • Coordinates of C = (- 1, 2)

Using midpoint Formula,

\rm :\longmapsto\: \sf \: Midpoint \: of \: AC \: = \: \bigg(\dfrac{x_1+x_2}{2} , \dfrac{y_1+y_2}{2} \bigg)

Here,

  • x₁ = - 4

  • x₂ = - 1

  • y₁ = - 1

  • y₂ = 2

So,

\rm :\longmapsto\:Midpoint \: of \: AC = \bigg(\dfrac{ - 4  - 1}{2} ,\dfrac{ - 1 + 2}{2} \bigg)

\rm :\longmapsto\:Midpoint \: of \: AC = \bigg(\dfrac{ - 5}{2} ,\dfrac{1}{2} \bigg)

Now,

Let us first find midpoint of BD.

  • Coordinates of B = ( - 1, - 1)

  • Coordinates of D = (a, b)

Using midpoint Formula,

\rm :\longmapsto\: \sf \: Midpoint \: of \: BD \: = \: \bigg(\dfrac{x_1+x_2}{2} , \dfrac{y_1+y_2}{2} \bigg)

Here,

  • x₁ = - 1

  • x₂ = a

  • y₁ = - 1

  • y₂ = b

So,

\rm :\longmapsto\:Midpoint \: of \: BD = \bigg(\dfrac{ - 1 + a}{2} ,\dfrac{ - 1 + b}{2} \bigg)

We know,

  • In a square diagonals bisect each other,

So,

  • Midpoint of AC = Midpoint of BD

\rm :\longmapsto\:\bigg(\dfrac{ - 5}{2} ,\dfrac{1}{2} \bigg) = \bigg(\dfrac{ - 1 + a}{2} ,\dfrac{ - 1 + b}{2} \bigg)

So, on comparing we get

\rm :\implies\: - 5 =  - 1 + a \:  \:  \: and \:  \:  \: 1 =  - 1 + b

 \red{\bf :\implies\:a =  - 4 \:  \:  \: and \:  \:  \: b = 2}

Now to find the length of diagonal of a square.

We know,

  • In square, the length of diagonals are equal.

So,

We evaluate, Length of diagonal AC

  • Coordinates of A = ( - 4, - 1)

  • Coordinates of C = (- 1, 2)

Using Distance Formula,

We know,

{\underline{\boxed{\rm{\quad Distance = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \quad}}}}

Here,

  • x₁ = - 4

  • x₂ = - 1

  • y₁ = - 1

  • y₂ = 2

So,

{\rm{\quad \: AC  = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \quad}}

{\rm{\quad \: AC  = \sqrt{( - 1  + 4)^2 + (2  + 1)^2} \quad}}

{\rm{\quad \: AC  = \sqrt{(3)^2 + (3)^2} \quad}}

{\rm{\quad \: AC  = \sqrt{(9) + (9)} \quad}}

{\rm{\quad \: AC  = \sqrt{18} \quad}}

{\rm{\quad \: AC  = \sqrt{3 \times 3 \times 2} \quad}}

 \purple{{\rm{\quad \: AC  = 3\sqrt{2} \quad}} \:  \rm \: units}

Similar questions