(c) Factorise: a3 + b3 + c3 - 3abc.
Answers
a3 + b3 + c3 - 3abc = (a + b +
c)(a² + b² + c² - ab - bc - ca)
Identity: a3 + b3 + c3 3abc = (a + b + c)(a2 +
b2 + c2 - ab - bc - ca)
How is this identity obtained?
Let's see how.
Taking RHS of the identity:
(a + b + c)(a + b2 + c2-ab-bc-ca)
Multiply each term of first polynomial with
every term of second polynomial, as shown
below:
= a(a + b2 + c2 - ab - bc - ca ) + b(a2 + b2 + c2 -
ab-bc - ca ) + c(a + b2 + c2 - ab-bc-ca)
= { (a* a?) + (a*b2) + (a * (?) - (a * ab) - (a*
bc) (a * ca) } + {(b * a) + (b*b2) + (b* c2) - (b
* ab) - (b* bc) - (b * ca)} + {(c* a?) + (b* b2) +
(c * c2) - (c * ab) - (c* bc) - (c* ca)}
Now, solve multiplication in curly braces and
we get:
= a3 + ab + ac2 - a²b - abc a?c + a?b + b3 +
bc2 - ab? - b?c abc + a?c + b?c + c3 - abc -
bc2 - ac?
Rearrange the terms and we get:
= a3 + b3 + c3 + alb - alb + ac2-ac2 + ab2 - ab2
+ bc2 - bc2 + a?c - a?c + b2c - b?c - abc - abc -
abc
Above highlighted like terms will be subtracted
and we get:
= a3 + b3 + c3 - abc - abc - abc
Adding like terms i.e (-abc) and we get:
= a3 + b3 + c3 - 3abc
Hence, a3 + b3 + c3 - 3abc = (a + b + c)(a + b2
+ c2 - ab-bc-ca)
Following are a few applications to this