Calculate and compare the energies of two radiations one with a wavelength of 800 nm and other with wavelength of 400 nm.
Answers
Answered by
17
Given, the two energy of radiations with wavelength and
We know that,
E = energy
h = Planck’s constant
ν = frequency
and
C = Speed of light
We also know,
Substitute in the equation,
For
For
Finally, the wavelength is inversely proportional to energy, where the radiation with wavelength 400nm is higher than the radiation with wavelength 800nm.
Answered by
1
Given, the two energy of radiations with wavelength { \lambda }_{ 1 } = 800nmλ1=800nm and { \lambda }_{ 2 } = 400nmλ2=400nm
We know that, E\quad =\quad h\nuE=hν
E = energy
h = Planck’s constant = 6.626\quad \times \quad { 10 }^{ -34 }\quad Js=6.626×10−34Js
ν = frequency
{ \lambda }_{ 1 } = 400nmλ1=400nm and { \lambda }_{ 2 } = 800nmλ2=800nm
C = Speed of light = 3\quad \times \quad { 10 }^{ 8 }\quad m/s=3×108m/s
We also know,

Substitute in the equation,
E\quad =\quad h\quad \times \quad \frac { c }{ \lambda }E=h×λc
For { \lambda }_{ 1 } = 400nmλ1=400nm
E\quad =\quad \frac { 6.626\quad \times \quad { 10 }^{ -34 }\quad \times \quad 3\quad \times \quad { 10 }^{ 8 } }{ 400\quad \times \quad { 10 }^{ -9 } }E=400×10−96.626×10−34×3×108
E\quad =\quad 5\quad \times \quad { 10 }^{ -19 }\quad JE=5×10−19J
For { \lambda }_{ 2 } = 800nmλ2=800nm
E = \frac { 6.626\quad \times \quad { 10 }^{ -34 }\quad \times \quad 3\quad \times \quad { 10 }^{ 8 } }{ 800\quad \times \quad { 10 }^{ -9 } }E=800×10−96.626×10−34×3×108
E\quad =\quad 2.5\quad \times \quad { 10 }^{ -19 }\quad JE=2.5×10−19J
Finally, the wavelength is inversely proportional to energy, where the radiation with wavelength 400nm is higher than the radiation with wavelength 800nm.
We know that, E\quad =\quad h\nuE=hν
E = energy
h = Planck’s constant = 6.626\quad \times \quad { 10 }^{ -34 }\quad Js=6.626×10−34Js
ν = frequency
{ \lambda }_{ 1 } = 400nmλ1=400nm and { \lambda }_{ 2 } = 800nmλ2=800nm
C = Speed of light = 3\quad \times \quad { 10 }^{ 8 }\quad m/s=3×108m/s
We also know,

Substitute in the equation,
E\quad =\quad h\quad \times \quad \frac { c }{ \lambda }E=h×λc
For { \lambda }_{ 1 } = 400nmλ1=400nm
E\quad =\quad \frac { 6.626\quad \times \quad { 10 }^{ -34 }\quad \times \quad 3\quad \times \quad { 10 }^{ 8 } }{ 400\quad \times \quad { 10 }^{ -9 } }E=400×10−96.626×10−34×3×108
E\quad =\quad 5\quad \times \quad { 10 }^{ -19 }\quad JE=5×10−19J
For { \lambda }_{ 2 } = 800nmλ2=800nm
E = \frac { 6.626\quad \times \quad { 10 }^{ -34 }\quad \times \quad 3\quad \times \quad { 10 }^{ 8 } }{ 800\quad \times \quad { 10 }^{ -9 } }E=800×10−96.626×10−34×3×108
E\quad =\quad 2.5\quad \times \quad { 10 }^{ -19 }\quad JE=2.5×10−19J
Finally, the wavelength is inversely proportional to energy, where the radiation with wavelength 400nm is higher than the radiation with wavelength 800nm.
Similar questions