Physics, asked by ibrahim14, 1 year ago

calculate percentage error in kinetic energy of a body of mass 23 + - 0.1 g and moving with velocity of 46+_0.2 cm/s

Answers

Answered by shailendrachoubay216
6

Answer:

1.3 %.

Explanation:

Given:

  • Mass of the body with uncertainty, \rm m\pm \Delta m = 23\pm 0.1\ g.
  • Velocity of the body with uncertainty, \rm v\pm \Delta v = 46\pm 0.2\ cm/s.

Therefore,

\rm m = 23\ g.\\\Delta m = 0.1\ g.\\v= 46\ cm/s.\\\Delta v = 0.2\ cm/s.

The Kinetic energy of the body is given by

\rm K.E. = \dfrac 12 mv^2.

Therefore, the uncertainty in the kinetic energy of the body is given by

\rm \dfrac{\Delta K.E.}{K.E.}=\dfrac{\Delta m}{m}+\dfrac{\Delta (v^2)}{v}\\\\\rm=\dfrac{\Delta m}{m}+\dfrac{2\Delta v}{v}\\\\=\dfrac{0.1}{23}+\dfrac{2\times 0.2}{46}\\=0.01304.\ \ \ ...........\ \ (1).

The percentage error in the kinetic energy is given by

\rm Percentage\ error =\dfrac{Change\ in\ K.E.}{Original\ K.E.}\times 100\%= \dfrac{\Delta K.E.}{K.E.}\times 100\%.

Using (1),

\rm Percentage\ error = 0.01304\times 100\% = 1.304\%\approx 1.3\%.

Similar questions