Calculate potential on the axis of a disc of radius R due to a charge Q uniformly distributed on its surface.
NCERT Class XII
Physics - Exemplar Problems
Chapter 2. Potential and Capacitance
Answers
Answered by
11
Suppose we take a circular ring of width dr and radius r, the charge enclosed with in that area dQ = 2 π r dr ρ
ρ is the charge density per unit area = Q /(πR^2)
The potential due to this dQ at a point P at distance d from the center of the disc on the axis of the disc is: dV = (1/4πε₀) dQ / √(d² + r²)
![dV=\frac{1}{4 \pi \epsilon_0} \frac{dQ}{\sqrt{d^2+r^2}}\\\\V= \frac{1}{4 \pi \epsilon_0}\int\limits^{R}_{0} {\frac{2\pi r \rho}{\sqrt{d^2+r^2}}} \, dr\\\\ =\frac{\rho}{2 \epsilon_0} [\sqrt{d^2+r^2}]_0^R\\\\=\frac{\rho}{2\epsilon_0}\ \sqrt{d^2+R^2}\\\\V=\frac{Q}{2\pi \epsilon_0 R^2}\sqrt{d^2+R^2} dV=\frac{1}{4 \pi \epsilon_0} \frac{dQ}{\sqrt{d^2+r^2}}\\\\V= \frac{1}{4 \pi \epsilon_0}\int\limits^{R}_{0} {\frac{2\pi r \rho}{\sqrt{d^2+r^2}}} \, dr\\\\ =\frac{\rho}{2 \epsilon_0} [\sqrt{d^2+r^2}]_0^R\\\\=\frac{\rho}{2\epsilon_0}\ \sqrt{d^2+R^2}\\\\V=\frac{Q}{2\pi \epsilon_0 R^2}\sqrt{d^2+R^2}](https://tex.z-dn.net/?f=dV%3D%5Cfrac%7B1%7D%7B4+%5Cpi+%5Cepsilon_0%7D+%5Cfrac%7BdQ%7D%7B%5Csqrt%7Bd%5E2%2Br%5E2%7D%7D%5C%5C%5C%5CV%3D+%5Cfrac%7B1%7D%7B4+%5Cpi+%5Cepsilon_0%7D%5Cint%5Climits%5E%7BR%7D_%7B0%7D+%7B%5Cfrac%7B2%5Cpi+r+%5Crho%7D%7B%5Csqrt%7Bd%5E2%2Br%5E2%7D%7D%7D+%5C%2C+dr%5C%5C%5C%5C+%3D%5Cfrac%7B%5Crho%7D%7B2+%5Cepsilon_0%7D+%5B%5Csqrt%7Bd%5E2%2Br%5E2%7D%5D_0%5ER%5C%5C%5C%5C%3D%5Cfrac%7B%5Crho%7D%7B2%5Cepsilon_0%7D%5C+%5Csqrt%7Bd%5E2%2BR%5E2%7D%5C%5C%5C%5CV%3D%5Cfrac%7BQ%7D%7B2%5Cpi+%5Cepsilon_0+R%5E2%7D%5Csqrt%7Bd%5E2%2BR%5E2%7D)
i suppose this is right.
ρ is the charge density per unit area = Q /(πR^2)
The potential due to this dQ at a point P at distance d from the center of the disc on the axis of the disc is: dV = (1/4πε₀) dQ / √(d² + r²)
i suppose this is right.
kvnmurty:
click on thanks button above please
Answered by
0
Can you attach a photo?of question?
Similar questions