if x^4+1/x^4=194 then x^3+1/x^3=?
Answers
Answered by
346
Hi ,
We know the identity ,
_______________________
a² + b² + 2ab = ( a + b )²
a² + b² = ( a + b )² - 2ab
________________________
x⁴ + 1 / x⁴ = 194 ---( 1 )
( x² + 1 / x² )² - 2 = 194
( x² + 1 / x² )² = 194+2
x² + 1 /x² = √196
x² + 1 /x² = 14 -----( 2 )
( x + 1 / x )² - 2 = 14
( x + 1 / x )² = 14 +2
( x + 1/x ) =√16
x + 1 / x = 4------( 3 )
Therefore,
x³ + 1 / x³ = ( x + 1 /x )(x² + 1/x² - 1 )
=4 × ( 14 - 1 )
[ From ( 2 ) and ( 3 )
= 4 × 13
= 52
I hope this helps you.
:)
We know the identity ,
_______________________
a² + b² + 2ab = ( a + b )²
a² + b² = ( a + b )² - 2ab
________________________
x⁴ + 1 / x⁴ = 194 ---( 1 )
( x² + 1 / x² )² - 2 = 194
( x² + 1 / x² )² = 194+2
x² + 1 /x² = √196
x² + 1 /x² = 14 -----( 2 )
( x + 1 / x )² - 2 = 14
( x + 1 / x )² = 14 +2
( x + 1/x ) =√16
x + 1 / x = 4------( 3 )
Therefore,
x³ + 1 / x³ = ( x + 1 /x )(x² + 1/x² - 1 )
=4 × ( 14 - 1 )
[ From ( 2 ) and ( 3 )
= 4 × 13
= 52
I hope this helps you.
:)
Answered by
106
Hi hope it will help u.. I have done the math in the most simple way...
Attachments:
Similar questions