Math, asked by SharmaShivam, 1 year ago

Calculate
7^{log_{3}5}+3^{log_{5}7}-5^{log_{3}7}-7^{log_{5}3}

Answers

Answered by Grimmjow
50

\bigstar\;\;\boxed{\mathsf{We\;know\;that : x = p^{\log_px}}}

\mathsf{\bullet\;\; p\;can\;be\;written\;as\;\large\boxed{\mathsf{q^{\log_qp}}}}

\mathsf{\implies x = \left(q^{\log_qp}\right)^{(\log_px)}}

\mathsf{\implies x = q^{(\log_qp)(\log_px)}}

\mathsf{Applying\;\log_q\;on\;both\;sides,\;We\;get :}

\mathsf{\implies \log_qx = \log_q\left[q^{(\log_qp)(\log_px)}\right]}

\bigstar\;\;{\boxed{\mathsf{We\;know\;that : \log_a(b)^c = c\log_ab}}}

\mathsf{\implies \log_qx = {(\log_qp)(\log_px)\log_qq}}

\bigstar\;\;{\boxed{\mathsf{We\;know\;that : \log_a(a) = 1}}}

\implies \boxed{\mathsf{\log_qx = {\log_qp.\log_px}}}

\mathsf{Now,\;Consider : 7^{\log_35}}

\bigstar\;\;\mathsf{\log_35\;can\;be\;written\;as\;\log_37.\log_75}

\mathsf{\implies 7^{\log_37.\log_75}}

\mathsf{\implies 7^{\log_75.\log_37}}

\bigstar\;\;\mathsf{7^{\log_75} = 5}}

\mathsf{\implies 5^{\log_37}}

\implies \mathsf{7^{\log_35} = 5^{\log_37}}

In the Similar way :

\mathsf{Consider : 3^{\log_57}}

\bigstar\;\;\mathsf{\log_57\;can\;be\;written\;as\;\log_53.\log_37}

\mathsf{\implies 3^{\log_53.\log_37}}

\mathsf{\implies 3^{\log_37.\log_53}}

{\bigstar\;\;\mathsf{3^{\log_37} = 7}}

\mathsf{\implies 7^{\log_53}}

\implies \mathsf{3^{\log_57} = 7^{\log_53}}

Substituting the found out values in the question, We get :

\mathsf{\implies 5^{\log_{3}7} + 7^{\log_{5}3} - 5^{\log_{3}7} - 7^{\log_{5}3}}

\mathsf{\implies 5^{\log_{3}7} - 5^{\log_{3}7} + 7^{\log_{5}3} - 7^{\log_{5}3}}

\mathsf{\implies 0}

In General :

\huge{\boxed{\mathsf{a^{\log_{b}c} = c^{\log_{b}a}}}}


ty009: Nice ans. would u like to solve my Q. too...
Answered by MaheswariS
21

Answer:

7^{log_{3}5}+3^{log_{5}7}-5^{log_{3}7}-7^{log_{5}3}=0

Step-by-step explanation:

Concept used:

Let a^x=N

log_{a}N=x

Then,

N=a^{log_{a}N}...............(1)

7^{log_{3}5}+3^{log_{5}7}-5^{log_{3}7}-7^{log_{5}3}

1.

7^{log_{3}5}

=(3^{log_{3}7})^{log_{3}5}   (using(1))

=3^{log_{3}7\:log_{3}5}

2.

3^{log_{5}7}

=(5^{log_{5}3})^{log_{5}7} (using(1))

=5^{log_{5}3\:log_{5}7}

3.

5^{log_{3}7}

=(3^{log_{3}5})^{log_{3}7} (using(1))

=3^{log_{3}5\:log_{3}7}

4.

7^{log_{5}3}

=(5^{log_{5}7})^{log_{5}3} (using(1))

=5^{log_{5}7\:log_{5}3}

Now,

7^{log_{3}5}+3^{log_{5}7}-5^{log_{3}7}-7^{log_{5}3}

=3^{log_{3}7\:log_{3}5}+5^{log_{5}3\:log_{5}7}-3^{log_{3}5\:log_{3}7}-5^{log_{5}7\:log_{5}3}

=0


DIVINEREALM: Brilliant Ans Sir
Similar questions