Math, asked by Anonymous, 6 months ago

Calculate the amount and the compound interest with out using direct formula on:

(1) Rs 4,600 in 2 years when the rates of interest of successive years are 10%and 12% respectively.

(2) 16,000 in 3 years, when the rates of the interest for successive years are 10%, 14% and 15% respectively.

Note :
Need proper answers
No spam please

Answers

Answered by DüllStâr
58

 \Large{\boxed {\text \blue {Question: }}}

Calculate the amount and the compound interest with out using direct formula on:

  • Rs 4,600 in 2 years when the rates of interest of successive years are 10%and 12% respectively.

  • 16,000 in 3 years, when the rates of the interest for successive years are 10%, 14% and 15% respectively.

\Large{ \boxed{\text \blue {To find: }}}

In both parts we have to find :

  • Amount
  • Compound interest

\Large{ \boxed{ \text{ \blue{Answer:}}}}

 \Large{\orange{ \bold{Part \: 1: }}}

year 1:

Here:

  • P=₹4600
  • R=10%
  • T=1 year

\\

Interest for 1 year:

\\

 \tt{ Simple \: Interest =  \dfrac{P \times R \times T}{100}  }

 \tt{:\implies Simple \:  Interest =  \dfrac{4600 \times 1 \times 10}{100}  }

 \tt{:\implies Simple  \: Interest  =  \frac{460 \cancel{0} \times 1 \times  \cancel{10}}{ \cancel{100}} }

 \tt{:\implies Simple \: Interest =₹460  }

\\

Amount after 1 year:

\\

 \tt{Amount =Simple \:Interest +Principle   }

 \tt{:\implies Amount =₹4600+₹460}

 \tt{:\implies Amount =₹5,060}

\\

Year 2:

Here:

  • P=₹5060(Amount of 1 year)
  • R=12%
  • T=1 year

\\

Interest for 2 year:

\\

 \tt{Simple \: Interest =  \dfrac{P \times R \times T}{100}  }

 \tt{:\implies Simple \: Interest =  \dfrac{5060 \times 12 \times 1}{100} }

 \tt{:\implies Simple \:  Interest =  \dfrac{506 \cancel{0}  \times 12 \times 1}{10 \cancel{0}} }

 \tt{ :\implies Simple\:Interest = \dfrac{6,072}{10} }

 \tt{ :\implies Simple\:Interest =₹ 607.2}

\\

Amount after 2 year:

\\

 \tt{Amount = Simple  \: Interest  + P}

 \tt{:\implies Amount = 607.2 + 5060}

  :\implies  \blue{\boxed{\tt{ Amount =₹ 5667.2}}}

\\

Compound Interest:

\\

 \tt{Compound \:  Interest =Final \:  Amount- Initial  \:  \: P }

 \tt{:\implies Compound \:  Interest  = 5667.2 - 4600 }

 :\implies \blue{ \boxed{ \tt{Compound \:  Interest  =₹ \: 1067.2 }}}

 \Large{\orange{ \bold{Part \: 2: }}}

Year 1:

Here:

  • P=₹16000
  • R=10%
  • T=1

\\

Interest for 1 year:

\\

\tt{Simple \: Interest =  \dfrac{P \times R \times T}{100}  }

\tt{:\implies Simple \: Interest =  \dfrac{16000 \times 10 \times 1}{100}  }

\tt{:\implies Simple \: Interest =  \dfrac{1600 \cancel0 \times  \cancel{10} \times 1}{1 \cancel0 \cancel{0}}  }

\tt{:\implies Simple \: Interest =  ₹1600  }

\\

Amount after 1 year:

\\

\tt{:\implies Amount = 1600+16000 }

\tt{:\implies  Amount =  ₹17,600}

Year 2:

Here:

  • P= ₹17600(Amount of 1 year)
  • R=14%
  • T=1

\\

Interest for 2 year:

\\

\tt{Simple \: Interest =  \dfrac{P \times R \times T}{100}  }

\tt{:\implies Simple \: Interest =  \dfrac{17600 \times 14 \times 1}{100}  }

\tt{:\implies Simple \: Interest =  \dfrac{176 \cancel{00 }\times 14 \times 1}{ \cancel{100}}  }

\tt{:\implies Simple \: Interest =  176  \times 14  }

\tt{:\implies Simple \: Interest = ₹ 2,464 }

\\

Amount after second year:

\\

 \tt{Amount = Simple  \: Interest  + P}

 \tt{:\implies Amount = 2464  + 17600}

 \tt{:\implies Amount = ₹20,064}

Year 3:

Here:

  • P = ₹20,064
  • R =15%
  • T= 1

\\

Interest for 3 year:

\\

\tt{Simple \: Interest =  \dfrac{P \times R \times T}{100}  }

\tt{:\implies Simple \: Interest =  \dfrac{20064 \times 15 \times 1}{100}  }

\tt{:\implies Simple \: Interest =  \dfrac{300,960}{100}  }

\tt{:\implies Simple \: Interest =  3009.60 }

\\

Amount after 3 year:

\\

 \tt{Amount = Simple  \: Interest  + P}

 \tt{Amount =  3009.60 + 20064}

 :\implies \blue{\boxed{\tt{ Amount = ₹23,073.6}}}

\\

Compound Interest:

\\

 \tt{Compound \:  Interest =Final \:  Amount- Initial  \:  \: P }

 \tt{:\implies Compound \:  Interest  = ₹23,073.6 - 16000 }

:\implies \blue{ \boxed{ \tt{Compound \:  Interest  =₹7,073.6 \:  }}}

Similar questions