Calculate the amount of lime, , required to remove hardness of 50,000 litres of well water which has been found to contain 1.62 g of calcium bicarbonate per 10 litre.
Answers
Answered by
2
Given,
10 L of well water contains 1.62 gram of Calcium Bicarbonate
Therefore, totally 50,000 L of well water contains 8100 of
We know that,
Molar Mass of Calcium Bicarbonate
Molar Mass of lime water
Then,
Number of moles of = Number of moles of
m = 3700 g
Therefore, the required mass of lime is 3700 g.
Answered by
2
Given,
10 L of well water contains 1.62 gram of Calcium Bicarbonate Ca{ \left( { HCO }_{ 3 } \right) }_{ 2 }Ca(HCO3)2
Therefore, totally 50,000 L of well water contains 8100 of Ca{ CO }_{ 3 }CaCO3
We know that,
Molar Mass of Calcium Bicarbonate Ca{ \left( { HCO }_{ 3 } \right) }_{ 2 } = 162 gCa(HCO3)2=162g
Molar Mass of lime water Ca{ \left( OH \right) }_{ 2 } = 74 gCa(OH)2=74g
Ca{ \left( { HCO }_{ 3 } \right) }_{ 2 }\quad +\quad Ca{ \left( OH \right) }_{ 2 }\quad \rightarrow \quad 2Ca{ CO }_{ 3 }\quad +\quad 2{ H }_{ 2 }OCa(HCO3)2+Ca(OH)2→2CaCO3+2H2O
Then,
Number of moles of Ca{ \left( { HCO }_{ 3 } \right) }_{ 2 }Ca(HCO3)2 = Number of moles of Ca{ \left( OH \right) }_{ 2 }Ca(OH)2
\frac { 8100 }{ 162 } \quad =\quad \frac { m }{ 74 }1628100=74m
m\quad =\quad \frac { 74\quad \times \quad 8100 }{ 162 }m=16274×8100
m = 3700 g
Therefore, the required mass of lime is 3700 g.
10 L of well water contains 1.62 gram of Calcium Bicarbonate Ca{ \left( { HCO }_{ 3 } \right) }_{ 2 }Ca(HCO3)2
Therefore, totally 50,000 L of well water contains 8100 of Ca{ CO }_{ 3 }CaCO3
We know that,
Molar Mass of Calcium Bicarbonate Ca{ \left( { HCO }_{ 3 } \right) }_{ 2 } = 162 gCa(HCO3)2=162g
Molar Mass of lime water Ca{ \left( OH \right) }_{ 2 } = 74 gCa(OH)2=74g
Ca{ \left( { HCO }_{ 3 } \right) }_{ 2 }\quad +\quad Ca{ \left( OH \right) }_{ 2 }\quad \rightarrow \quad 2Ca{ CO }_{ 3 }\quad +\quad 2{ H }_{ 2 }OCa(HCO3)2+Ca(OH)2→2CaCO3+2H2O
Then,
Number of moles of Ca{ \left( { HCO }_{ 3 } \right) }_{ 2 }Ca(HCO3)2 = Number of moles of Ca{ \left( OH \right) }_{ 2 }Ca(OH)2
\frac { 8100 }{ 162 } \quad =\quad \frac { m }{ 74 }1628100=74m
m\quad =\quad \frac { 74\quad \times \quad 8100 }{ 162 }m=16274×8100
m = 3700 g
Therefore, the required mass of lime is 3700 g.
Similar questions