Physics, asked by diaforus, 9 months ago

calculate the angle of minimum deviation for an equilateral prism of refractive index root 3

Answers

Answered by BrainlyRonaldo
14

\bigstar Answer \bigstar

\checkmark Given:

Equilateral prism of refractive index = \sf \sqrt{3}

\checkmark To Find:

Calculate the angle of minimum deviation for an equilateral prism of refractive index = \sf \sqrt{3}

\checkmark Solution:

We know that,

\star Refractive Index of Prism (μ)

\blue{\boxed{\sf \mu=\dfrac{sin\left(\dfrac{A+D}{2}\right)}{sin\left(\dfrac{A}{2}\right) } }}

Here,

μ = Refractive Index

A= Angle of prism

D = Angle of minimum deviation

Given that,

Equilateral prism

Therefore,

A = 60°

According to the Question,

We are asked to find the Angle of minimum deviation

Therefore,

A = 60 °

μ = \sf \sqrt{3}

Substituting the above values,

We get,

\implies \sf \sqrt{3} =\dfrac{sin\left(\dfrac{60+D}{2}\right)}{sin\left(\dfrac{60}{2}\right)}

\implies \sf \sqrt{3} =\dfrac{sin\left(\dfrac{60+D}{2}\right)}{sin(30^{\circ})}

\rm We \ know \ that, \\\\ \longrightarrow sin 30 ^{\circ}= \dfrac{1}{2}

\implies \sf \sqrt{3} =\dfrac{sin\left(\dfrac{60+D}{2}\right)}{\dfrac{1}{2}}

\sf \implies \dfrac{\sqrt{3} }{2}=sin\left( \dfrac {60+D}{2}\right)

Taking sine function to the other side it becomes sine inverse

Therefore,

\sf \implies sin^{-1} \left(\dfrac{\sqrt{3} }{2}\right) =\left( \dfrac {60+D}{2}\right)

Taking the 2 of denominator of the right side fraction to the other side it becomes numerator of the left side fraction

Hence,

\sf \implies 2sin^{-1} \left(\dfrac{\sqrt{3} }{2}\right) =60+D

\rm We \ know \ that, \\\\ \longrightarrow sin^{-1} \left(\dfrac{\sqrt{3} }{2} \right )=60^{\circ} \\\\ Therefore, \\\\ 2sin^{-1} \left(\dfrac{\sqrt{3} }{2} \right )= 2 \times 60^{\circ} \\\\ Hence, \\\\ 2sin^{-1} \left(\dfrac{\sqrt{3} }{2} \right )=120^{\circ}

Therefore,

\sf \implies 120^{\circ}=60^{\circ}+D

\sf \implies 60^{\circ}+D=120^{\circ}

\sf \implies D=120^{\circ}-60^{\circ}

Hence,

\sf \implies D=60^{\circ}

Therefore,

The angle of minimum deviation = 60 °

Similar questions