Math, asked by jiya9861, 10 months ago

Calculate the area of a sector of angle 60°. Given, the circle is having a radius of 6 cm.​

Answers

Answered by Arcel
33

132/7 cm^2

Given:

Sectors of an Angle = 60°

Radius of the Circle = 6 cm

To Find:

The area of the sector of an angle.

Calculating:

The formula that is used to calculate area of sector:

= (θ/360°)×π r^2

Substituting all the values that are given to us in this formula we get:

= 60/360 x 22/7 x 6 x 6

= 6 × 22/7

= 132/7 cm^2

Therefore, the area of the sector is 132/7 cm^2.

Answered by Anonymous
33

\bf{\underline{\underline \blue{Solution:-}}}

\sf\underline{\red{\:\:\: AnswEr:-\:\:\:}}

  • The area of the sector of an angle = \sf {\dfrac{132}{7} \:Cm^2}

\sf\underline{\red{\:\:\: Given:-\:\:\:}}

  • The Sectors of an Angle is 60°.
  • And, the Radius of the Circle is 6 cm.

\sf\underline{\red{\:\:\: Need\:To\: Find:-\:\:\:}}

  • The area of the sector of an angle = ?

\bf{\underline{\underline \blue{Explanation:-}}}

\sf\underline{\red{\:\:\: Formula\:Used\: Here:-\:\:\:}}

\bigstar \:  \boxed{ \sf \: Area \:of \: sector = \bigg(\dfrac{\emptyset}{360\degree}\bigg) \times \pi r^2} \\\\

\sf\underline{\green{\:\:\: Now,Putting\:the\: values:-\:\:\:}}

\dashrightarrow \sf {Area \:of \: sector = \dfrac{60}{360} \times \dfrac{22}{7} \times 6 \times 6} \\\\

\dashrightarrow \sf {Area \:of \: sector = 6 \times \dfrac{22}{7} } \\\\

\dashrightarrow \sf {Area \:of \: sector = \dfrac{132}{7} \:Cm^2} \\\\

\sf\underline{\green{\:\:\: Hence:-\:\:\:}}

  • The area of the sector of an angle = \sf {\dfrac{132}{7} \:Cm^2}

\rule{200}{2}

Similar questions