Math, asked by IsaFirdaus, 8 months ago

Calculate the area of as shown in figure​

Attachments:

Answers

Answered by Imblank
1

Answer:

Length of CO :

17² = 8²+x²

289 = 64 + x²

289-64 = x²

225 = x²

√225 = x

15 = x

Area of AOCD = 6×15 = 90cm²

Area of OBC = 1/2×8×15 = 60cm²

Total area = (90+60)cm² = 150cm²

Read my bio

Answered by MaIeficent
5

Step-by-step explanation:

\bf\underline{\underline{\red{Given:-}}}

  • ABCD is a trapezium.

  • AB // CD

  • CO ⊥ AB

  • AO = 6cm, OB = 8cm , CB = 17cm and CD = 6cm

\bf\underline{\underline{\blue{To\:Find:-}}}

  • The area of the trapezium ABCD

\bf\underline{\underline{\green{Solution:-}}}

\rm CO\: is\: drawn\: perpendicular\: to\: AB

\rm In \: ∆BOC\: is \: right\: angled \: at \:O

\rm By \: applying \: Pythagoras \: theorem\: in \triangle BOC

\rm \implies  {BC}^{2}  =  {OB}^{2}  +  {OC}^{2}

\rm \implies  {17}^{2}  =  {8}^{2}  +  {OC}^{2}

\rm \implies  {OC}^{2} = {17}^{2}  -  {8}^{2}

\rm \implies  {OC}^{2} = 289  -  64

\rm \implies  {OC}^{2} = 225

\rm \implies  OC = \sqrt{225}

\rm \implies  OC = 15cm

Now:-

• CD = 6cm

• AB = 6 + 8 = 14cm

\rm The\: two\: parallel\: sides \: are\: 6cm \: and \: 8cm

\rm Height \: (OC)  = 15cm

 \boxed{ \rm \leadsto Area \: of \: trapezium =  \frac{1}{2} \times (Sum \: of \: parallel \: sides) \times Height }

\rm = \dfrac{1}{2} \times ( CD + AO ) \times OC

\rm = \dfrac{1}{2} \times ( 6 + 14 ) \times 15

\rm = \dfrac{1}{2}\times 20 \times

\rm = 10 \times 15

\rm = 150cm^{2}

\underline{\boxed{\purple {\rm \therefore Area \: of \: trapezium = 150cm^{2}}}}

Similar questions