Physics, asked by manoj858, 2 months ago

Calculate the area of cross section of a wire of length 2m, its resistance is 25Ω and the resistivity of material of wire is 1.84*10-6 Ωm​

Answers

Answered by rsagnik437
110

Answer :-

Area of cross section of the wire is 1.472 × 10 .

Explanation :-

We have :-

→ Length of the wire = 2 m

→ Resistance = 25 Ω

→ Resistivity = 1.84 × 10 Ωm

________________________________

We know that :-

R = ρL/A

Where :-

R is the resistance.

ρ is resistivity.

L is length of the wire.

A is area of cross section of the wire.

Substituting values, we get :-

⇒ 25 = [1.84 × 10⁻⁶ × 2]/A

⇒ 25A = 3.68 × 10⁻⁶

⇒ A = [3.68 × 10⁻⁶]/25

⇒ A = 0.1472 × 10⁻⁶

A = 1.472 × 10


MystícPhoeníx: Splendid !
rsagnik437: Thank you so much :)
Answered by BrainlyRish
94

Given : Length ( l ) of wire is 2 meters , it's Resistance ( R ) is 25 Ω & resistivity ( \rho ) of material of wire is 1.84 × 10^{-6} Ω.m

Exigency To Find : Area ( A ) of Cross section of wire .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀▪︎⠀⠀Finding AREA of CROSS SECTION of wire :

⠀Given that ,

⠀⠀⠀⠀⠀▪︎⠀⠀Length ( L ) of wire is 2 meters ,

⠀⠀⠀⠀⠀▪︎⠀⠀it's Resistance ( R ) is 25 Ω &

⠀⠀⠀⠀⠀▪︎⠀⠀Resistivity( \bf \rho ) of material of wire is 1.84*10^{-6} Ω.m .

\dag\:\:\sf{ As,\:We\:know\:that\::}\\\\\qquad\maltese\:\bf Resistivity\:of\:wire\:: \\\\

\qquad \dag\:\:\bigg\lgroup \sf{ R \:= \: \dfrac {\rho \times L }{A}\:\:}\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here , \rho is the Resistivity of wire , R is the Resistance , L is the Length of wire & A is the Area of Cross section of wire .

\qquad:\implies \sf \rho\:= \: \dfrac {R \times L }{A}\: \\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad:\implies \sf \rho \:= \: \dfrac {R \times L }{A}\: \\

\qquad:\implies \sf 25 \:\:= \: \dfrac{1.84 \: \times 10^{-6}\times 2 }{A} \:\: \\

\qquad:\implies \sf 25 \:\:= \: \dfrac{3.68 \: \times 10^{-6}  }{A} \:\: \\

\qquad:\implies \sf 25A \:\:= \: 3.68 \: \times 10^{-6}  \:\: \\

\qquad:\implies \sf A \:\:= \:\dfrac{ 3.68 \: \times 10^{-6} }{25} \:\: \\

\qquad:\implies \sf A \:\:= \:\dfrac{ \cancel {3.68} \: \times 10^{-6} }{\cancel {25}} \:\: \\

\qquad:\implies \sf A \:\:= \:0.1472 \: \times 10^{-6}  \:\: \\

\qquad:\implies \sf A \:\:= \:1.472 \: \times 10^{-7}  \:\: \\

\qquad:\implies \bf A \:\:= \:1.472 \: \times 10^{-7} \: m^2  \:\: \\

\qquad :\implies \pmb{\underline{\purple{\:A \:\:= \:1.472 \: \times 10^{-7} \: m^2 }} }\:\bigstar \\

⠀⠀⠀⠀⠀▪︎⠀⠀⠀Here , A denotes Area of Cross section of wire which is \bf \:1.472 \: \times 10^{-7} \: m^2 \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:Hence,\:Area \:of\:Cross \:Section \:of\:wire\:is\:\bf{\:1.472 \: \times 10^{-7} \: m^2  }}.}}\\

Similar questions