Calculate the area of shaded region in the above figure.
1X4=4 M
120 m
122 m
24 m
26 m
22 m
Answers
Answer:
314
Step-by-step explanation:
120
+122
=242
+26
+24
+22
=314
Step-by-step explanation:
semiperimeter of triangle ABC (s)
semiperimeter of triangle ABC (s)= 120+122+22/2
semiperimeter of triangle ABC (s)= 120+122+22/2=132
semiperimeter of triangle ABC (s)= 120+122+22/2=132Area of triangle ABC
semiperimeter of triangle ABC (s)= 120+122+22/2=132Area of triangle ABC=√s(s-a)(s-b)(s-c)
semiperimeter of triangle ABC (s)= 120+122+22/2=132Area of triangle ABC=√s(s-a)(s-b)(s-c)=√132(132-120)(132-122)(132-22)
semiperimeter of triangle ABC (s)= 120+122+22/2=132Area of triangle ABC=√s(s-a)(s-b)(s-c)=√132(132-120)(132-122)(132-22)=√132*12*10*110
semiperimeter of triangle ABC (s)= 120+122+22/2=132Area of triangle ABC=√s(s-a)(s-b)(s-c)=√132(132-120)(132-122)(132-22)=√132*12*10*110=√12*11*12*11*10*10
semiperimeter of triangle ABC (s)= 120+122+22/2=132Area of triangle ABC=√s(s-a)(s-b)(s-c)=√132(132-120)(132-122)(132-22)=√132*12*10*110=√12*11*12*11*10*10=12*11*10
semiperimeter of triangle ABC (s)= 120+122+22/2=132Area of triangle ABC=√s(s-a)(s-b)(s-c)=√132(132-120)(132-122)(132-22)=√132*12*10*110=√12*11*12*11*10*10=12*11*10=1320m^2
semiperimeter of triangle ABC (s)= 120+122+22/2=132Area of triangle ABC=√s(s-a)(s-b)(s-c)=√132(132-120)(132-122)(132-22)=√132*12*10*110=√12*11*12*11*10*10=12*11*10=1320m^2Semiperimeter of triangle OBC
semiperimeter of triangle ABC (s)= 120+122+22/2=132Area of triangle ABC=√s(s-a)(s-b)(s-c)=√132(132-120)(132-122)(132-22)=√132*12*10*110=√12*11*12*11*10*10=12*11*10=1320m^2Semiperimeter of triangle OBC=24+26+22/2=36
semiperimeter of triangle ABC (s)= 120+122+22/2=132Area of triangle ABC=√s(s-a)(s-b)(s-c)=√132(132-120)(132-122)(132-22)=√132*12*10*110=√12*11*12*11*10*10=12*11*10=1320m^2Semiperimeter of triangle OBC=24+26+22/2=36Area of triangle OBC
semiperimeter of triangle ABC (s)= 120+122+22/2=132Area of triangle ABC=√s(s-a)(s-b)(s-c)=√132(132-120)(132-122)(132-22)=√132*12*10*110=√12*11*12*11*10*10=12*11*10=1320m^2Semiperimeter of triangle OBC=24+26+22/2=36Area of triangle OBC=√36(36-24)(36-26)(36-22)
semiperimeter of triangle ABC (s)= 120+122+22/2=132Area of triangle ABC=√s(s-a)(s-b)(s-c)=√132(132-120)(132-122)(132-22)=√132*12*10*110=√12*11*12*11*10*10=12*11*10=1320m^2Semiperimeter of triangle OBC=24+26+22/2=36Area of triangle OBC=√36(36-24)(36-26)(36-22)=√36*14*10*14
semiperimeter of triangle ABC (s)= 120+122+22/2=132Area of triangle ABC=√s(s-a)(s-b)(s-c)=√132(132-120)(132-122)(132-22)=√132*12*10*110=√12*11*12*11*10*10=12*11*10=1320m^2Semiperimeter of triangle OBC=24+26+22/2=36Area of triangle OBC=√36(36-24)(36-26)(36-22)=√36*14*10*14=254m^2
semiperimeter of triangle ABC (s)= 120+122+22/2=132Area of triangle ABC=√s(s-a)(s-b)(s-c)=√132(132-120)(132-122)(132-22)=√132*12*10*110=√12*11*12*11*10*10=12*11*10=1320m^2Semiperimeter of triangle OBC=24+26+22/2=36Area of triangle OBC=√36(36-24)(36-26)(36-22)=√36*14*10*14=254m^2Area of shaded region
semiperimeter of triangle ABC (s)= 120+122+22/2=132Area of triangle ABC=√s(s-a)(s-b)(s-c)=√132(132-120)(132-122)(132-22)=√132*12*10*110=√12*11*12*11*10*10=12*11*10=1320m^2Semiperimeter of triangle OBC=24+26+22/2=36Area of triangle OBC=√36(36-24)(36-26)(36-22)=√36*14*10*14=254m^2Area of shaded regionarea of triangle ABC- area of triangle OBC
semiperimeter of triangle ABC (s)= 120+122+22/2=132Area of triangle ABC=√s(s-a)(s-b)(s-c)=√132(132-120)(132-122)(132-22)=√132*12*10*110=√12*11*12*11*10*10=12*11*10=1320m^2Semiperimeter of triangle OBC=24+26+22/2=36Area of triangle OBC=√36(36-24)(36-26)(36-22)=√36*14*10*14=254m^2Area of shaded regionarea of triangle ABC- area of triangle OBC=1320-254
semiperimeter of triangle ABC (s)= 120+122+22/2=132Area of triangle ABC=√s(s-a)(s-b)(s-c)=√132(132-120)(132-122)(132-22)=√132*12*10*110=√12*11*12*11*10*10=12*11*10=1320m^2Semiperimeter of triangle OBC=24+26+22/2=36Area of triangle OBC=√36(36-24)(36-26)(36-22)=√36*14*10*14=254m^2Area of shaded regionarea of triangle ABC- area of triangle OBC=1320-254=1065.45m^2
please mark the answer as branliest